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Preface

This book is designed primarily to supplement standard texts in elementary
differential equations. All types of ordinary and partial differential equations
found in current texts, together with the various procedures for solving
them, are included. Since the beginning student must be concerned largely
with mastering the methods of selving a variety of different type~equations,
it is felt that there is need for a comprehensive problem hook sich as this.
It should prove also of equal service to practicing engineers gnﬂ $éientists who
feel the need for a review of the theory and problem worl’ihiar.l"t']lis increasingly

important field. K7,
R

Each chapter, except for the third which is entirely expository, begins with
a brief statement of definitions, principles, and’t‘iédrcms, followed by a set of
solved and supplementary problems. These sgl’vge({ problems have been selected
to make a careful study of each as rewarding as possible. Equal attention has
been given to the chapters on applica&idﬁs; which include a wide variety of
problems from geometry and the phy@'ichl sciences.

Much more material is presénted here than can be taken up in most first
courses. This is done not only{ta’meet any choice of topics which the instructor
may make, but also to stimulate further interest in the subject and to provide
a handy book of referqni}ef However, this book is definitely not a formal text-
book and, since there/ds always a tendency to “get on” with the problems, those
being introduced .T}\;\tile subject for the first time are warned against asing it as
a means of av@iﬁhg a thorough study of the regular text.

'\

The éut}ll;r is pleased to acknowledge his indebtedness to Mr. Louis Sand-
ler, associate editor of the publishers, for invaluable suggestions and eritical

review of the entire manuscript.

Frank AYRES, JR

Carlisle, Pa.
September, 1952
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CHAPTER 1

Origin of Differential Equations

A DIFFERENTIAL EQUATION is an equation which involves derivatives. For example,

1) jdX =x+5 5) (y”}l2 + (y')5 + 3y = x?

dx

d’ . dy 3z 28
2) —— +3- +2y =0 == = + x==
) e o ¥ 8) % z x\,By',

'S )\
' = 2 3

3 Wiy 3 ) ———a z -!-,\a@-—-r’: = x% 4 y.
4) y" + 2(y") + y' = cos x ox” ¢ LRy

If there is a single independent variab@m in 1)-5), the derivatives are
ordinary derivatives and the equation is p.gl@éd an ordinary differential equa-
tion. Y

If there are two or more independepti"irariables, as in 6)-T7), the deriva-
tives are partial derivatives and thelequation is called a partial differen-
tial equation,

The order of a differential egilation is the order of the highest derivative
which occurs. Equations 1), )\'\ and 6) are of the first order; 2), 5), amd 7)
are of the second order; and\4) is of the third order. _

The degree of a diffefential equation which can be written as a polynomial
in the derivatives is the degree of the highest ordered derivative which then
occurs. All of the abgve examples are of the first degree except 5) which is
of the second degreé.)

A discussion pof{partial differential equations will be given in Chapter 28.
For the presen%‘dnly ordinary differential eguations with a single dependent
variable will\be considered. :

\\
ORIGIN OF DIFFERENTIAL EQUATIONS.
a) Geometric Problems. See Problems 1 and 2 below.
b) Physical Problems, See Problems 3 and 4 below.

¢) Primitives. A relation between the variables which involves n essential
arbitrary constants, as y = x*+Cx or y = Ax2 + Bx, is called a primitive.
The n constants, always indicated by capital letters here, are called essen-
tial if they cannot be replaced by a smaller number of constants. See Prob-

lem 5.

In general, a primitive involving n essential arbitraryconstants will give
rise to a differential equation, of order n, free ofarbitrary constants. This
equation is obtained by eliminating the n constants between the (n +1) equa-
tions consisting of the primitive and the n equations obtained by differen-
tiating the primitive n times with respect to the independent variable. See
Problems 6-14 below.
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ORIGIN OF DIFFERENTIAL EQUATIONS

SOLVED PROBLEMS

A curve is defined by the condition that at each of its polnts {(x,¥), ¥
its slope dy/dx is equal to twice the sum of the coordinates of the
point. Express the condition by means of a differential equation.
: . dy P@.y
The differential equation representing the condition is ; = 2(x+ ¥y "

ol 7

4 curve is defined by the condition that the sum of the z- and y-intercepts of its tangents is
always equal to 2. Express the condition by means of a differential equation,

The equation of the tangent at (x,y) on the curve is Y-y - :_—Z(X-x) and the x- and y-

intercepts are respeclively X - x—yd—x and ¥ = y-x ‘5 The differential.ecki)ation represent-
dy dx \
) ux dy dy 2 O dy
i the ¢ t - = -y —_— - X — = _ - L wos 232 = R
ng the condition is X + ¥ = x ydy t oy xdx 2 or x(dx) (xs"jt g )dx +y=0

N/
X
~
o
¢ N
p

One hundred grams of cane sugar in water are being converted H(t'o dextrose at a rate which is
proportional to the amount unconverted, Find the differentdal equation expressing the rate of
conversion after t minutes. WO
e\
0.‘
Let ¢ denote the number of grams converted in t.m@hg.:tes. Then (100 — g} is the number of grams

unconverted and the rate of conversion is given py’;vgt—: = k(100 - g}, k being the constant of

NS

proportionality. N

L QY

A particle of mass m moves along a stra{ght line (the x-axis) while subject to 1} a force pro-
porticnal to its displacement x frou:y.'zi:\fixed point O in its path and directed toward O and 2)
a resisting force proportional to %ts velocity, Express thetotal forceas a differential equa-
tion, 'S

Qs dx
The first force may be represented by —k,x and the second by -k?a; » where k, =and k, are

factors of proportiona i:t:i.“ 2
4 x

n"\" ) ) dx
The total force (m&?s x acceleration) is given by =& = -kyx - kegt- .
dt
N
AWV
+8
In each of the eguations a) y = x2+A+B, by y-= 4¢"7", ¢) y = A+ InBr show that only one

of the two arbitrary constants is essential.

<

[

a) Since A +B is no more than a single arbitrary constant, only one essential arbitrary con-
stant is involved.

B
by y = Aexw = Ae“e, and Ae? is no more than a single arbitrary constant.

c)y=-A+InBx = A+ 1InB+ 1n=x, and (4 + 1n B) is no more than a single constant,

Obtain the differential equation associated with the primitive y = AxZ + Bx +C.
Since there are three arbltrary constants, we consider the four equations

d dz d5
y = A=+ Bx+C, Y - 245 +B, £Y - o4, Y _o.
dx dx? di?
3
The last of these i—l, being free of arbitrary constants and of the proper order, is the

dx3
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ORIGIN OF DIFFERENTIAL EQUATIONS

required equation,

Note that the constants could not have been eliminated between the first three of the ahove
equations, Note also that the primitive can be obtained readily from the differential equa-
tion by integration,

Ohtain the differential equation essociasted with the primitive x2y5 + :u:jjy5 =,

Differentiating once with respect to x, we obtain (2xy5+ 3::2)'22—? + (312y5+ 5x5y“ %) =0

or, when &y # 0, (2y + 3z g%) + xy2(3y + Bx g) = 0 as the required equation.

When written in differential notation, these equations are
1) (xydx + Sx2ydy) + (32%ydx + 5aPy'dyy = 0
and 2) (ydx + 3xdy) + xy* (3yde + Szdy) = 0. N\

Note that the primitive can be cobtained readily from 1) by integratioﬁ..but not so readily
from 2). Thus, to obtain the primitive when 2) is given, it is necessani;o determine the fac-
tor xy? which was removed from 1), A\

¢
Obtain the differential equation associated with the primitive y = A cos ax + B sinax, 4
and B being arbitrary constants, and e being a fized con%g:nt.

<!

Here dy . -Ada sin ax + Ba cos ax N\
dx Ve \4
a2 A\ »
and LY - _Ad® cos ar - Ba® simax = —a2(A cos ax + B sin ax) = —a°y,
dx?
. , . , 3% 2
The required differential equation ig - T ey - 0.
'\
"
¢ LN

Obtain the differential equatich, asSsociated with the primitive y = Ae** + B+ C.

N\ 2 3

Here dy 2402 4 B{‘,' iy . 4de?* + Be”, dy | 84e¥* + Be®.

dx PR dx? dx’

sy dl N d’  dy o . dy dY dy d
Then 9 o SR ga2r, SX | | o4%% gng Z¥ L 2X . R L I,

PR dx?  dx dd ax? de?  dz

~O , ,
The requikd equation is c_i_y - 3il + 2iy- = 0.
3 e dx

2
Obtain the differential equation associated with the primitive y = Ciez'x + Coe %, C,,ex.

2
Here z—i = 3C1e3x + 2C,e2” + Csex. 5—32, = 981e5x + 4C,e2x + Caex,
day 3x 2% %
and —5 = 3MCye + 8Ce ~ + Gge
dx

 The elimination of the constants by elementary methods is somewhat tedious. If three of
the equations are solved for C,, Cp, G, using determinants, and these substituted in the
fourth equation, the result may be put in the form (called the eliminant):



4 ORIGIN OF DIFFERENTIAL EQUATIONS
eix ezx ex y 1 ¥
3¢’ 26%* &° y! 6 3 y!
2 x = e Yooy v 12yt - 2297+ 12y = o,
9e5x 4 & ¥y g y"
2787  8e2* &y 27 ¥y
@’ d° d
The required differential equation is oY %X v 11 @@ 6y = 0.
dx? dx?

2 2

11, Obtain the differential equation associated with the primitive y = Cx" + C°.
dy 1 dy 2 2 1 dy 2 1
Since = =2Cx, C=— = and = "+ 07 =2 — = —
d 2 ds Y md T Q\)\
dy 2 3 dy 2 _«< >
The required differential eguation is (Z) 2x ;’; - 4x'y -iJ}.

Note. The primitive involves one arbitrary constant of deg:‘eé two and the resulting dif-
ferential equation is of order one and degree two.

s X Y
w

\/
12. Find the differential equation of the family of circ'la} of fixed radius r with centers on the
x-axis, \\\\
\

The equation of the family is (x~C) + 2 \ N

C being an arbitrary constant, a,'y
dy 033!M
Then (x-C)y+ ¥y = =0, -C = <+ and the
-0y \de
differential equaticn is ¥y (gi) \+ y2 = e,
&~

13 Find the differential e,qu\tion of the family of parabolas with foci at the origin and axes
along the x-axis. \~

"‘\

o)
\:f‘l‘“ﬁx.y)
[/

! x
e

;1:2+y2 = (24 +x)2

(-4.0)

= 4A(A + x) = 4A(A + x)
The equation of the family of parabolas is y2 = 4A(A + x).
Then yy' = 24, A =+4yy’, and y* = Zyy'Ghyy’ + ).
P
The required equation is y( ) -y = 0.

dx



14, Form the differentia! equation representing all tangents to the parzbola y2

15.

16.

ORIGIN OF DIFFERENTIAL EQUATIONS 3

2x.

At any point (4,B) on the parabola, the equation of the tangent is y-B = (x—A)/B or,
since A = B2, By - x + {;Bz. Eliminating B between this and By’ =1, obtained by differenti-
ation with respect to x, we have as the required differential equation 2x(y’)2 —Zyy'+1=0,

SUPPLEMENTARY PROBLEMS

Classify each of the following equations as to order and degree.

a) dy + (xy — cos x)dx = 0 Ans. Order one; degree one
2 y
d di o &\
b) L -—Q + i —9 + Q =0 Ans, Order two; degree one \\
de? dt C
" 4 ol
z im}
¢} ¥+ xy" 4+ y(y'y +xy =0 Ans, Order three; degrée.one
d’v d d D
cH 1 4
dy — — (—)2 = Ans, Order- twc;;&gree one
dx? dx J
3
d d?
€} (_2)2 - (__1_0)4 + vy =0 Ans, (}rder\hree degree two
duv’? a® NS
C\Y
" Y N/
N e’ - ay"+y =0 Ans\S Order three; degree does not apply
zy vp'+rp = sin @ _wMns. Order one; degree one
-3 L\
hy y' +x = (y-zy") “\\ Ans, Order one; degree four
& \J
2 AN
i) 5—’9 /p+ (ﬁ)2 O\ Ans. Order two; degree four
d82 Vo
N/
X \’
Write the dlfferentla\equatmn for each of the curves determined by the given conditions,
'\
a) At each pomt\(x .y} the slope of the tangeat is equal to the square of the abscissa of the
point, /\\/ Ans, y' = x?

3
"4

b) At each point (x,y) the length of the subtangent is equal to the sum of the coordinates of
the point. Ans, y/y' =x+y or (x+y)yf =

¢) The segment joining P(x,y) and the point of intersection of the normel at £ with the x-axis

is bisected by the y-axis. Ans. ¥ + x— =4y or yy' + =0

d) At each point {p,&) the tangent of the angle between the radius vector and the tangent is

equal to 1/3 the tangent of the vectorial angle, Ans, p-:—g = % tan &

¢) The area bounded by the arc of a curve, the x-axis, and two ordinates, one fixed and ope
variable, is equal to twice the length of the arc between the ordinates.

© 3
Hint: f ydx = 2f Y1+ ' dx. Ans. y = 2/1+@'¥
o [+



17‘

18.

19.

20.

21.

22.

ORIGIN OF DIFFERENTIAL EQUATIONS

Express each of the fellowing physical statemenits in differential equation form.
@) Radium decomposes at a rate proportional to the amount { present. Ans., dQ/dt = k0

b) The population P of a city increases at a rate proportional to the population and to the
difference between 200,000 and the population, Ans, dP/dt = kP(200,000 -~ P)

¢) For a certain substance the rate of change of vapor pressure (P) with respect to temper-
ature (T) is propertiocnal teo the vapor pressure and inversely proportional to the square

of the temperature, Ans. dP/dT - .lzP/T2
d) The potential difference E across an element of inductance L is equal to the product of L
and the time rate of change of the current ¢ in the inductance. Ans. K = L :—:
. dv T o 2N\ d%s .
¢) ¥Mess x acceleration = net force. Ans. m — = Fearvm — = k
de N\ di?
Obtain the differential equation associated with the given primiti%e] A and B being arbitrary
constants., ""t*'
a) y = Ax Ans. y' = y/x e) y = si!ii:i'+r1) Ans. (.)"’)v2 =1 —-y2
by y = Ax + B Ans, ¥Y" =0 N {\:J'Aex + B Ans, ¥" =¥’
4 R& ‘
ayy - e s Be” Ang, Y' =¥ \\g‘} x = A sin(y+B)y Ans. ¥" = ;t(y")3
O\
dy y = A sin x Ans, ¥y' =y cotx .";‘:;'"h) iny = ax? i B
AN Ans. xyy” ~yy! —x(y')’ =0

K\
Find the differential equation 0f..t\® family of circles of variable radii r with centers on
£ 3
the x-axis. (Compare with Probdemi2,) .
Hint: (x-4)% + y2 = r?, A apd » being arbitrary constants. Ans. ¥¥" + ¥y + 1 =0

Find the differential eqpo:it'i:cun of the family of cardiods p = e{l - cos 8).
R Ans. (1 — cos @)dp = p sin @ d8

Find the differenj{iﬁ equation of all straight lines at a unit distance from the origin,
. ey =1+ (v
AN Ans.  (xy'-¥) "N

Find the d}{ﬁérential equation of all circles in the plane.

Hint: Use x2+y2—2Axu2By+C = 0. Ans. [1+(_)(")2]y"’—:5_y"(y")2 =0



CHAPTER 2

Solutions of Differential Equations

£ PROBLEM in elementary differential equations is essentially that of recovering
the primitive which gave rise to the equation. Inother words, the problem of
solving a differential equation of order n is essentially that of finding a
relation between the variables involving n independent arbitrary constants
which together with the derivatives obtained from it satisfy the differential
equation, For example:

~

AN
Differential Equation Primitive :ZZ.’:

3 dy _ g y =AxZ + Bx +C "‘{E;; b.6, Chap.1)
— = = {™{Frob. 6, .
dx’ ON P

2 S
dy dy dy _ P-4 2x ¥ %
2) ;;. - 6;-2- + 115; -6y =0 y=Ce + Cze.\\t' 3@ (Prob. 10, Chap.1)
L &
dy 3
3) yz(E.x)z + y? = r? ‘ (x-0’ + 2= r? (Prob.12, Chap.1)

3
N
"
&

E CONDITIONS under which we can be assuré'ci‘ that a differential equation is solv-
able are given by Existence Theorems .

For example, a differential '\’e’auation of the form y‘=g(x,y) for which
a) g{x,y) is continuous and Single valued over a region B of points (x.,¥).
b) %5 exists and is contimbous at all points in R,

Y P
admits an infinity oi@xﬂutiona f(x,y,C} =0 (C, an arbitrary constant) such
that through each pdint of R there passes one and only one curve of the fam-
ily f(x,y,C)=0. {See Problem 5.

7\

PARTICULAR SOLgI'ieN of a differential equation is one obtained from the primitive
by assigningvdefinite values to the arbitrary constants. For example, in 1)
shove y=0 (4=B=C=0), y=2x+5 (4=0, B=2, C=§), and y=x2+2x+3 (4
=1, B=2, €=3) are particular solutions.

Geometrically, the primitive is the equation of a family of curves and a
particular solution is the equation of some one of the curves. These curves
are called integral curves of the differential equation.

As will be seen from Problem 8, a given form of the primitive may not in-
clude all of the particular solutions. Moreover, as will be seen from Prob-
lem 7, a differential equation may have solutions which cannot be obtained from
the primitive by any manipulation of the arbitrary constant as in Problem 6.
Such solutions, called singular sofutions, will be considered in Chapter 10.

The primitive of a differential equation is usually called fthe general so-
iution of the equation. Certain authors, because of the remarks in the para-
graph above, call it a general solution of the equation.
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18.

19

20.

21.

22.

ORIGIN OF DIFFERENTIAL EQUATIONS

Express each of the following physical statements in differential equation form,
@) Radium decomposes at a rate proportional to the amount ) present, Ans, dQ/dt = _k(

b) The population P of a city increases at a rate proportional to the population and to the
difference between 200,000 and the population, Ans. dP/dt = kP(200,000 - P)

¢) For a certain substance the rate of change of vapor pressure (P) with respect to temper-
ature (T) is proportionsl to the vapor pressure and inversely proportional to the square

of the temperature, Ans. dP/dT = kP/T?
d} The potential difference E across an element of inductance L is equal to the product of L
and the time rate of change of the current ¢ in the inductance. Ans, E =L j—l
¢
_ . dv d’s
e) Mass X acceleration = net force, Ans., m — = F orim— =
dt N\ di2
Obtain the differential eqnation asscciated with the given primithe.ig}anﬁ B being arbitrary
constants, A\
a)y y = Ax Ans., ¥’ = y/x ey y = Sin@;&d&) Ans. (y’)2 =1 - y2
by y =Ax + B Ans., y" =0 Hy =\A-‘~3x; B Ans, y" = y'
x+4 x ' 'x;’\' : N 133
€y y=e = Be Ans. ¥' =¥ BY X\~ A sin(y+B) Ans., ¥y = x({¥')
O
dy ¥ = A sin x Ans, ¥y’ =y cotx “‘.‘ﬁ'j in ¥ = Ax® + B

N Ans. xyy

LW

\\ 2
Toyy' - xx'y =0

‘5

Pind the differential equation of th(n\’{z}lnily of circles of variable radii r with centers on
the x-axis, (Compare with Problem 1Z.) ,
Hint: (x—AY +y2 = r2, 4 and r‘b@ing arbitrary constants. Ans, yy" + {¥') + 1 =0

Find the differential equatio;ﬁ:'éif the family of cardiods p = a(i - cos 8).

0N Ans. (1 - cos @)dp = p sin B d&
&
£ )
Find the differentia&sdhatinn of all straight lines at a unit distance from the origin.
A Ans. (ay'-y? =1+ (y'F
N
.
Find the dif%rgﬁtlal equation of all circles in the plane,
4

Hint: Use x2+y° —24x-2By+C = Q. Arns. [1+ Y Iy -3y (3" = 0



CHAPTER 2

Solutions of Differential Equations

THE PROBLEM in elementary differential equations is essentially that of recovering
the primitive which gave rise to the equation. Inother words, the problem of
solving a differential equation of order n is essentially that of finding a
relation between the variables involving n independent arbitrary constants
which together with the derivatives obtained from it satisfy the differential
equation. For example;

~N

AN
Differential Equation Primitive )\
d3y ’:':' )
1 =L =0 y =dAx?+ Bx+C ~ *(Prob.6, Chap.1)
an :,\\ .
d’y d2Y dy 3x 2 “’\“
— _ %\ Y x
2 ;;.; - 6;2— + 11-&-; -6y =0 y=Ce + Cz'e\ N Cse (Prob.10, ¢Chap.1)
”x.\“
2,dy.2 2 2 2"\;} 2
¥ (a) ty' =r X (x=-CY'Gyw =r (Prob. 12, Chap,1)

THE CONDITIONS under which we ean be assffgreﬁl thata differential equation is solv-
able are given by Existence Theorems.

For example, a differentia;}}e\quation of the form y’=g(x,y) for which
a) g(x,y) is continuous anfi‘single valued over a region R of points (x,¥).
b) %‘g exists and is continuous at all points in B,

4 ¢
admits an infinity ef solutions f(x,y,0) =0 (C, an arbitrary constant) such
that through eac%gint of R there passes one and only one curve of the fam-
ily f(x,%,0) =[K\ ee Problem 5.

A PARTICULAR %D’T\IGN of a differential equation is one obtained from the primitive
by assigning definite values to the arbitrary constants. For example, in 1)
above y=0 (A=B=C=0), y=2x+5 (4=0, B=2, C=5), and y=x?+2x+3 (4
=1, B=2, C=3) are particular solutions.

Geometrically, the primitive is the equation of a family of curves and a
particular solution is the equation of some one of the curves. These curves
are called integral curves of the differential equation.

As will be seen from Problem 6, a given form of the primitive may not in-
clude all of the particular sclutions. Moreover, as will be seen from Prob-
lem 7, a differential equation may have solutions which cannot be obtained from
the primitive by any manipulation of the arbitrary constant as in Problem 6.
Such solutions, called singular solutions, will be considered in Chapter 10.

The primitive of a differential equation is usually called the general so-
lution of the equation. Certain authors, because of the remarks in the para-
graph above, call it a general solution of the equation.



8 SOLUTIONS OF DIFFERENTIAL EQUATIONS

A DIFFERENTIAL EQUATION % = g(x,y) associates with each point (xo,yo) in the re.
gion R of the above existence theorem & direction m = dy = 8(xs, o) _'
dx | (xg, Yo

The direction at each such point is that of the tangent to the curve of the
family f(x,y,C) =0, that is, the primitive, passing through the point.

The region R with the direction at each
of its points indicated is called a direc-
tion field, In the adjoining figure, a num-
ber of points with the direction at each is
shown for the equation dy/dx = 2x. The in-
tegral curves of the differential equation
are those curves having at each of their
points the direction given by the equation.
In this example, the integral curves are
parabolas,

Such diagrams are helpful in that they
aid in clarifying the relation between a
differential equation and its primitive, but
since the integral curves are generally
quite complex, such & diagram does not aid
materially in obtaining their equations.

“tlope =4
\ L slopea 2

&

SOLVED PROUBLEMS

1. Show by direct substitution in the different.i;ifl‘%équation and a check of the arbitrary constants
that each primitive gives rise to the corr;g{sbonding differential equation,

N 2
a) y = Cysinx + Cyx A (l—xcotz)g—z—xﬂ+y=0
O de?
% \vd 3 2
b) y = Cye + Coxe™ + Cge_x+‘2x§x d—:- - c—i-% - :—: +y = 8"
dx dx
\<&
0 dy d% . . , .
¢) Substitute y = C, simei+ Cpx, il Cycosx + Gy, — = -Cysinx inthe differential equa

tion to obtain \\
"\‘(’.13— xcotx)(-Cy sinx) ~ x(C, cosx + Cu) + {Cg sinx + Cpz) =

<\:"""C1 sinx + Cyxcosx — Gxeosx - Cpx + G sinx + Cox = 0,

The ordér of the differentiel equation (2) and the number of arbitrary constants (2) agree.

(7)) y = Clex + C.i.::c\e,€ + o Gge™F o+ 2?e”,

(Co+ Cppe™ + Cpxe®™ — Cye™™ + 2%e™ + axe”,

y!

Y = (C+ 20" + Coxe™ + Coe™ + 2%%e* + gre¥ + 4%,

1
i

Y= (Cy+38C)e" + Cypxe” Coe™™ + 2%e™ + 120e” + 1227,

and y" - y" -~ y' + y = 8¢", The order of the differential equation and the number of arbitrary
constants agree,

d. .
2. Show that ¥y = 2x+ Ce” is the primitive of the differential equation Exz -y = 2(1-x) and find

the particular solution satisfied by x=0, ¥y =3 (i,e., the equation of the integral curve through
(0,3).



SOLUTIONS OF DIFFERENTIAL EQUATIONS 9

Substitute ¥ = 2«4+ Ce”™ and % = 2+Ce” inthe differential equation to obtain 2+ Ce'~ (2x+ Cex)
= 2~2¢, When x=0, y=3, 3= 2.0+ Ce® and C=3, The particular selution is y = 2x+ 3¢,

2

8. Show that y = Ciex+ Cze2x+ x 1is the primitive of the differential equation é—% - 35—% + 2y =
dx

9x -8 and find the equation of the integral curve through the points (0,0) and (1,0},

2
Substitute y = Cye™+ Coe "+ x, % = Cye™+ 2057 41, d—g - Cye* +4C,e®*  in the dif-

ferential equation to obtain Clex+ QCQezx- 3(Ciex+ 2C2e2x + 1)+ 2(Ciex+ C,;ez:‘c +x) = 2x=3.

_ Wher x=0, y=0: G;+C, =0, Whenx=1, y=0 Cle+C2e2 = -1,

2x .
Then C; = -G, = and the required equation is y = x + € S . N\
e"— e ez_ e A N\
O
2 , s , . AT dy2 dy
4, show that {y=-C)“=Cx is the primitive of the differential equat{cm» 4x(£) + ZxE -y =0
9.\ I
and find the equations of the integral curves through the poip{’{'l,m.
dy dy c )
Here 2y-O)===€C amd —= = -——src \/
v-0% R T ) Q)
NS
2 2 W\ 2 2
Then d4x C . 2 C _y - L x+({x{3t—C)-y(y—C) - yle - (y-0)] o.
4y - 0P 2(y-0) R ALY (y~0?

™
3

When x=1, y=2: (2-O2=C and X€=1,4,
The equations of the integral cur‘(g throngh (1,2) are (y - D% = x and (y - 8° = 4.

< '\\,.

R. The primitive of the differential equation Cx, Find the equation of the in-

El&
1
)
-
]

tegral curve through a) (1,2} Jand &) (0,0},
'.\QO

a) When x =1, y=2 Q;ﬁ’and the required equation is y = 2x.

by When x =0, y=0‘:~,§} is not determined, that is, all of the integral curves pass through the
origin, Note th&b g{z,y) = y/x is not continuous at the origin and hence the existence theorem
assures cne%hghénly one curve of the family y = Cr through each peint of the plane except the
origin,

6. Differentiating xy = Clx=-1)(y~1) and substituting for ¢, we obtain the differential equa-

tion
dy dy : xy dy
- = 1D+ y =1 = —— ===+ vy -1
oty {a-D=+y } (x—l)(y—l){(x =ty }
dy
-1 -1} = 0,
or 1 x(x DE + y(y -1} o

Now both ¥=0 and y =1 are solutlons of 13, since, for each, dy/dx=0 and 1) is satisfied.
The first is obtained from the primitive by setting C=0, but the second y =1 canrot be obtained
by assigning a finite value to C. Similarly, 1) may be obtained from the primitive in the form
Bxy = (x ~1)(y -1). Now the solution y =1 is obtained by setting B=0 while the solution y =9
cannot be obtained by assigning a finite value to B, Thus, the given form of a primitive may
not. include all of the particular solutions of the differential equation, (Note that x=1 is
also a particular solutiomn.)
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dy
. Differentiating y = Cx + 262 , solving for C = E’;’ and substituting inthe primitive yields the
differential equation

dyZ dy
2 &y = 0.
L (E)+x(f) b 0

1
Since y = - gxz’ i—i = - i-x satisfies 1y, x2+ 8y = 0 is a solution of 1).

Now the primitive is represented by a family of straight lines and it is clear that the
equation of a parabola cannot be cobtained by manipulating the arbitrary constant, Such a soly-
tlen is called a singular solution of the differential equation.

8. Verify and reconcile the fact that y =Cicos x + Cosinx and ¥ = 4 cos(x+B) are primitives

2
of g—% +y = 0. ~
dx ‘ N\
From y = C, cosx + C;sinx, ¥y’ = -C, sinx+ C,co8x and ::2~“’=
y"= -Cycosx -~ Cysinx = -y 0,1-’~§_Z+y 0.
N 42
NI
Fromy = Acos(x+8), y' - -Asin(x+8) and y"= —A'cps\x(j} By = ~y,
Now y = Acos(x+B) = A(cosx cosB - sinx sinB) ’
= (A cosB)cosx + (—AsinB;}.\sinx = Cycosx + Cy sinx,
"\
N
2 « W
9., Show that 1In x? & an; = A+x may be writft’g{fshs y2 = Be”.
x R ™
2 2 z :“ 2 At x A x %
In x +lny—=ln(x—- =11\)§=A+x. Then ¥ = e = e« = Be”,
o2
AN
10. show that Arc sin x - Arc sin:y’= A nmay be written as xv1-y? - y/1-x2 - B.
N\

sin(Arc sin x — Arc si\y) = sin A = B,

Then sin(Arc sin\}) cos(Arc sin y) — cos(Arc sin z) sin{Arc sin y) = %/ 1- —yv’l—:l:2 =
e) )
11. show that 1r}(\1,+ ¥) + In{l+x) = 4 may be written as xy+x+y ='C,
In(l+y) + In{l+=x) = ln(l+y)(1+x) = 4,

Then (1+y)(1+x)=xy+x+y+1=e'd=B and xy+x+y =B.1=C,

12. show that sinh y + coshy = Cx may be written as y = Inx + A,

Here sinhy + coshy = é{ey-—e-y) + %(ey.p 3'3’) = o = Cx.

Then y = InC +1lnx = A+ lnx,



SOLUTIONS OF DIFFERENTIAL EQUATIONS 1

SUPPLEMENTARY PROBLEMS

Show that each of the following expressions is a solution of the corresponding differential
equation, Classify each as a particular soluticn or genmersl solution (primitive).

3. ¥y= 2, xy' = 2y Particular solution
2 2 N
14. = +y =C, yyf+ x = 0. Primitive
15, ¥y =Cx + qu y = xy' + {y')“- Primitive
2 3 3 2 2 .
16, (1-x)y = x", 2%yl = y(y +32). Particular solution
M oy = e (1+x), y' -2 + ¥y =0, Particulé(\solution
A\
18. y=Cux + Czex. -1y =xy"+y =0, Gf;né(a'z.?solution
O
19. ¥ = C,_eJc + Cge"x, ¥ -y = 0. '\“f?gheral solution
- 0
20 ¥ = Ciex + Coe foex 4, ¥y —-y=4-x ‘~\ General solution
\Y
N
21, ¥ = Cre” + Cpe™”, ¥' -3y + 2 =0. PN General solution
<!
22. ¥y = C,_ech + C.‘,ezx + xzex. y* - 3y'+ 2y = 2e%\§”§’\x). General solution
O
ts:“ ¢
\:‘C‘
"s‘«
A\
<
¢ ‘&,}
N\
'..,\,;
N\ ¥/
O
'\w



CHAPTER 3

Equations of First Order and First Degree

A DIFFERENTIAL EQUATION of the first order and first degree may be written in the form
1) Nx,yydx + N(x,y)dy = 0.

=
»

EXAMPLE 1. a) g R AL 0 may be written as (y +x)dx + (y-x)dy =0 1in
X

which #(x,y) =y +x and N(x,y)= y —x.

b) g = 1+x"y may be written as (1+x*yydx —dy =0 in which
H(x,y)=1+x*y and N(x,y)=~1. R\

§

No/

If ¥(x,yYdx + N(x,y)dy is the complete differe;,[(t:iﬁl of a function wu(x,y),
that is, if H(x, ¥y dbe + N(x,y) dy=Sedie(x, y).

1) is called exact and pl{x, ¥y = C is its p{i‘mi‘tive or general solution,
INY
EXAMPLE 2. 3x2yzdx + 2x5y dy = 0 is\an”exact differential equation since

3x’yidx + 2y dy = d(x0y).  Its pr;lﬁ:i.tive is x*y* = C.

S

If 1) is not exact but

£ H(x, ¥y + K(x,yydy} = du(x,y),
£(x,y) is called an integpa‘jﬁng factor of 1) and u(x,y)=C is its primitive.
¢ N\
EXAMPLE 3. 3y dx + 2x d}: 0 is not an exact differential equation but when
multiplied by g(x,)(}\%:xzy, we have 3x“y?dx + 25’y dy = 0 which is exact. Hence,
the primitive of 8y.tix + 2x dy =0 is x’y2=C. See Example 2.

XY
£\

If 1) is ne\@”éxact and no integrating factor can be found readily, it may
be possiblg‘b) a change of one or both of the variables to obtain an equation
for whigp;'a:h' integrating factar can be found.

h
4

EXAMPLE 4. Tie transformation x = t—y, dx = dt —dy, (i.e., x+y = t),

reduces the equation (x+y +1)dx + (2x+ 2y +3)dy = O
to (t+1)(dt —dy) + (2¢ +3)dy = 0
or (t+1)dt+(t+2)dy=0.

By means of the integrating factor —;—1—5 the equation takes the form
+

£+ 1
dy + dt = dy +dt — ——dt = 0.
Y t+2 d t+2
Then y+t-1n(t+9) = C
and, since £ = x+y, 2y + x - In(x+y +2) = C.

Note. The transformation x+ y+l=t or 2x+2y+3=2s is also suggested by
the form of the equation,

12



CHAPTER 3

Equations of First Order and First Degree

A DIFFERENTIAL EQUATION of the first order and first degree may be written in the form
1) ¥(x,y)ax + ¥(x,y)dy = 0.

ExampPLE 1. &) gxz + H = 0 may be written as (y +x)dx + {(y—x)dy =0

which ¥(x,y) =y +x and N(x,y)= y ~x.

in

by d—y =1+ x’y may be written as (1+ xzy)dx =y =0 in which
dx "\

2\
N3

H(x,y)=1+x’y and ¥ix,y)=-1,

It #(x,yydx+K(x,y)dy is the complete differential\Gf a function u(x,y),
that is, if Hx,y)de + N(x,y)dy = duf@y).
1) 1s called exact and u(x,y) = C is its primitiye or general solution.

EXAMPLE 2. 3x"y dx + 2’y dy =0 is an ,eﬁ(it differential equation since
3’y dax + 20y dy = d(x’y?).  Its primitive)is x’y? = C.

1 3

If 1) is not exact but

§ O HMEI dx + N(x,y)dy} = du(x,y),
£(x,y) is called an integratin& féctor of 1) and u(x,¥)=C is its primitive.

EXAMPLE 3. 3y dx + 9x dy.—'\’ﬂ" iS not an exact differential equation but when
wultiplied by £(x.y) = x®p, We have 3x2y%dx + 2%’y dy = 0 which is exact. Hence,
the primitive of 3y &x¥2xdy =0 is xX¥y?=C. See Example 2.

O _ .

If 1) is not exadt and no integrating factor can be found readily, it may

be possible by aQsh’ange of one or both of the variables to obtain an equation

for which an inbegrating factar can be found,
&

Exnum{‘é:’me transformation x = t-y, dx = dt —-dy, (i.e., x+y = ¢),
reduces the equation (x+y +1)dx + (2x+ 2y +3ady =0
to (t+1)(dt -dy) + (2t +3dy =0
or (t+ 1)dt + (t+2)dy = 0,

By means of the integrating factor —t-:—2 the equation takes the form

t+1 1
dy + dt = +dt — ——dt =0,
Y t+2 & t+2
Then y+t—1ln(t+2)y =¢C
and, since t = x +y, 2y + x -~ In{x+y +2) = C.

Note, The transformation X+y+l=t or 2x+2y +3=2s is also suggested by
the form of the equation,

12



EQUATIONS OF FIRST ORDER AND FIRST DEGREE 13

A DIFFERENTIAL EQUATION for which an integrating factor is found readily has the

form

2) £ (x) g,(y)dx + f(x)-4,(y)dy = 0.

By means of the integrating factor U S » 2) is reduced to
Fo(x): g2(y)

2!) fi(x)dx + 81(}") dy — 0

£, (x} £2(y)

whose primitive is
fi(x)dx + gi(Y)dy = C.

£,(%) £2(¥) .
N
Equation 2) is typed as Variables Separabie and in2"h the\'{ariables are sep-
arated. S
EXAMPLE 5. When the differential equation \\“

3%y —xyydx + (26°y" + XpNey = 0
is put in the form  y(3x*—x)dx + x’(2y° +yydy = O

it is seen to be of the type Variables ?bbﬁrable. The integrating factor —1-;
\ yx

reduces it to (% - Lz)dx + (2y+y51635~é 0 in which the variables are sepa-
rated. Integrating, we obtain th@‘primitive

31[1;;'.?'\\1; + 2+ %y“ - C.
¢ '\\,.
IF EQUATION 1) admits a goinfion f(x,y,C) = 0, where C is an arbitrary constant,
there exist infinjtely many integrating factors &(x,y) such that

A e yIde + Keandy) = 0

is exact./Also, there exist transformations of the variables which carry 1)
into the ¥ype Variables Separable. However, no general rule can be stated here
for find¥ng either an integrating factor or a transformation. Thus we are
limited to solving certain types of differential equations of the first order
and first degree, i.e., those for which rules may be laid down for determin-
ing either an integrating factor or an effective transformation.

Equations of the type Variables Separable, together with equations which
can be reduced to this type by a transformation of the variables are con-

sidered in Chapter 4.

Exact differential equations and other types reducible to exact equations
by means of integrating factors are treated in Chapter 5.

The linear equation of order one
dy
3 = + P{x):y = Q(x
) dx )

and equations reducible to the form 3) by means of transformations are con-
sidered in Chapter 6.



14

EQUATIONS OF FIRST ORDER AND FIRST DEGREE

These groupings are a matter of convenience. A given equation may fall inge
more than one group,

ExaMPLE 6. The equation xdy -ydc=0 may be placed in 4ny one of the
groups since
a) by means of the integrating factor 1/xy the variables are separated; thys,
dy/y - dx/x = 0 s0 that Iny - lunx =1lnC or y/x - C.

b) by means of the integrating factor 1/x? or 1/y? the egualion is made ex-

act; thus, X% - ydx _ and £ = ¢ or XM - yde and - X - ¢ |
x2 X }’2 ¥
y. .1 _c
x c,
c} when written as %’ - ly' = 0, it is a }inear equation o order one,
dx X A\

23 3
E W3
o

No/"

~

Attention has been called to the fact that the form of the primitive is
not urique, Thus, the primitive in Example 6 mig}»(tl.\i)e given as

a) Iny - Ilnx = In C, By y/x = C, c) W ;’:Cx, dy x/y = K, ete,

It is usual to gceept any one of these fo:‘pﬁ\\w’ith the understanding, already
noted, that thereby certain particular ;;Qkuﬁ’iuns may be lost. There is an
additional difticulty! O\Y

EXAMPLE 7. It is clear that y=0Q<$ & particular solution of dy/dx =y or
dy —y «dx = 0. When y #0, we may writes ‘dy/y — dx =0 and obtain Iny-x =1n C
with C #0; in turn, this may be Written as y=Ce*, C£0, Thus, to include
all solutions, we should writel My = 0 y=Ce%, C#0. Bul note that y = Ce*,
frec of the restrictions imp@s donyand C, includes af{f solutions,

This situvation will arise repeatedly as we proceed but, as is customary,
we shall refrain from .pc’gi'nting out the restrictions: that 1s, we shall write
the primitive as y =¢€8¥, with ¢ completely arbitrary. In defense, we offer
the following obse'r:'?a‘tion. Let us multiply the given equation by e~* to ob-
tain e "dy — yel¥dx = 0 from which, by integration, we get ey = C or
¥ = Ce*, In thiéz\\:rocedure, it has not been Necessary to impose any restric-
tion on y or“\.(;‘;’o

\‘:



CHAPTER 4

Equations of First Order and First Degree

VARIABLES SEPARABLE AND REDUCTION TO
VARIABLES SEPARABLE

VARIABLES SEPARABLE. The variables of the equation H#(x,y)dx + N(x,y)dy = 0 are
separable if the equation can be written in the form

1 fi(x}'gz(]’)dx + fg(x)'gﬁ.(y}dy = 0.
. . 1 : . s &\
The integrating factor ———=——, found by inspection, \:¥duces 1) to the
fﬂ(x)'gz()’) (1‘/:
form O “
£, (x) dx + £1(y) dy = 0 '\s,:
fz(x) £2(¥) .\"\

from which the primitive may be obtained by'i’m::egration.

For example, (x-—-l)zydx + xz(y + 1}@\'3}’ is of the form 1), The integrat-
1 N (x-1)°
ing factor — reduces the equation 8 ~———

de + D - g in which
XZY PN X ¥

3

the variables are separated. .See Problems 1-5.

LN\
: N\
HOMOGENEOUS EQUATIONS. A fun{i:;i})n f(x,y) is called homogeneous of degree n 1f

O FOxAy) = N F(x,9).
P,
-For example: N/
N4 )
ay f(x,y) =\{i.‘:— %y 1is homogeneous of degree 4 since

AN ) = 0wt S 0P ) = X G- X’y) = N F(x,»).

N\

b) [\QE;p = e¥* ¢ ta.n; is homogeneous of degree 0 since
' 4
' FOx, ) = ™ 4 tan % = & 4 tang = N f(x,¥).

x? + sinx cosy is not homogeneous since
FOx ) = A2 + sin(wd cos(hy) £ N E(x,¥).

c) f(x,¥)

The differential equation #{x,y)dx + N(x,y)dy = 0 is called homogenecus
if H(x,y) and ¥(x,y) are homogeneous and of the same degree. For example,

2
x 1n§ dx + }-i- arc sin :-: dy = 0 is homogeneous of degree 1, but

neither (x%+y2)de — (xy®-y’)dy = 0 mnor (x +y¥ydx + (x-y)dy = 0 is a
homogeneous equation.

15
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EQUATIONS OF FIRST ORDER AND FIRST DEGREE
The transformation y = x, dy = vk + x dv
Will reduce any homogeneous equation to the form
P(x,vidx + Qlx,vidv = 0

in which the variables are separable. After integrating, v is repluced by y/x
to recover the original variables, See Problems 6-11,

EQUATIONS IN WHICH ¥(x,y) AND ¥(x,y) ARE LINEAR BUT NOT HOMOGENEOUS.
a) The equation (a,x + biy +¢c)dx + (a,x + by +e )y - 0, (rh, —a,b, = 0y,
is reduced by the transformation

aix-l-b’y = t. (fy = -d—t-..u'_zh._(f_‘,f
b,
to the form Pix, t)dx + Qix, t)at = 0 '\
in which the variahles are separable, *“ See Problem 12,

b) The equation (a,x+ biy vehdx + (a,x+ b,y + cp})dy =0, (ayh, —a,b, # 0Y,
is reduced to the homogenecus form N

(83x! + byy'Yeix' + (a,x\’.+ by dy' = ¢
. D
by the transformation X =x'+h g\i‘:Y“= vk
§
in which x=h, y=k are the solutiohs of the equations

MX+biyte, = 0 &ﬁd ax+ by tec, = 0, See Problems 13-14.

WQUATIONS OF THE FORM y. f(xy)diu* x.g(xy)dy = 0. The transformation
¢ &\J

X\
2y = 2, y=:—:. dy:xdz-zdx
s :u'2
‘\
reduces an equatipn’of this form to the form
Nl Plx,2)dx + Q(x,2)dz = ¢
in which ,t,qé”’variables are separable, See Problems 15-17.

OTHER SUBSTI}UTIONS. Equations, not of the types discussed above, may be reduced

to a form in which the variables are separable by means of a properly chosen
transformation. No general rule of Procedure can be given; in each case the
form of the equation suggests the transformation. See Problems 18-22.

SOLVED PROBLEMS
VARIABLES SEPARABLE.

1. solve 2’dx + (y+1)%dy = o,

The variables are separated, Hence, integrating term by term,

4 3
o, (1

4 3
= oar  3x o+ 4(y+ 1)
’ 3 1 Y

n
2



VARJARLES SEPARABLE 17

it 21

2. Solve z (y+1lydx + y (x-1)dy = O.
. 2 2
The integrating factor —-—-—1—-- reduces the equation to X _de+ y dy = 0.
(y+D{zx~1) x-1 y+1
Then, integrating (x+1 + 1 ydx + (y-1+ 1 ydy = 0,
z-1 y+1
L2 2
sx o+ x + lp{x~1) +3y -y + In{y+1y = Cyp,
o+ y2 + 2% - Zy+ 2In(x-L)(y+1) = Cy,
and G+ (y-D2+2InG-D(y+1 = C.
8. Solve 4xdy - ydx = x2dy or ydx + (x2-4x)dy = 0.
: 1 dx dy o .
The intesrating factor —— reduces the equation to + =£.={0\ in which the
y(x" - 4x) #z-4) ¥
variables are separated. R
\J
The latter equation may be written as ﬁ & - ‘& dx + ﬂ' = Q. J0r dx - EIE + 4.“.{2’:0_
x -4 x ¥ x.\\ } x=4 x b

Integrating, In{x-4) - lnx + 4 1lny =1nC or ({x —45;* = Cx.

‘v

d 4 ¢
4, solve =X = X or —3)dy = dydx. A
& n oD or x(y-Ndy = 4y \

The integrating factor % reduces the equatgi?:gn"to A dy = ;dx.
Integrating, y ~3lny = 4 lnx + 1»,19;; or ¥y = ln(Clx"ﬁ).

This may be written as Cisnc“y3 = ei'\\or x“y3 = Ce”.

R

&\J

5. Find the particular solution of§1+z’)dy - 22y ds =0 satisfying the initial conditions x =1,
y = 2. P e

>\Y; .
First find the primitiye)-using the integrating factor ——-
e y(1+1%)

2
Then ﬁ—-;ﬁ}:D. 1ny——%1n(1+x5} =y, 31ny=1n(1+x5)+1nC, y5=C(1+x5).

When x = 1,\3:%2 2’ = C(1+1), C=4, and the required particular solution is 3'3 =41 +x5).
' 4

HOMOGENEOUS EQUATIONS,

6. When Mdx + Ndy = 0 is homogeneous, show that the transformation y = wx will separate the
variables.

¥hen Mdx + Ndy

0 1s homogeneous of degree n, we mar write

Mdx + N dy

xn{Mi(%}c&+ N,,(J’-c')dy} = 0 whence Hl(gjdx ¥ N,(%)dy = 0.

The transformation y = vx, dy = vdx + xdv reduces this to
My(v) dx + Ny {vde + x dv} = 0 or  {My(v) + Ny(u)}dx + 2N, (v) dv = O
: dx Ni(v} dv ’

=,
x M (v) + vNy(v)

or, finally, = ¢ im which the variables are separated.
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T+ Solve (x5+y5)dz - 31y2dy = 0.

The equation is homogeneous of degree 3. We use the transformation ¥y rux, dy = vdr + xoy
to obtain

i}y x’{(lw’)dx - 3v2(ud.a: + xdn)} = 0 or  (1-2v'ydr - 3ix dy - 0
In which the variables are separable,

1 dr 3% a4y
Upon separating the variables, using the integrating factor ——— = -
(1 -2v%) g3

and  lnx+ 4 In(1-20°) =€y, 21Inx + In(1-20") = nC, or x(1-2v%) - C.
Since v = y/x, the primitive is x (1 -2y/x’) =C or z -2y - Cx.

Note that the equation is of degree 3 and that after the transformation :c5 is a factor of
the left member of 1), This factor may be removed when making the transformation.

~N

N
B. Solve xdy - ydx~vx'—y* dx = 0. N

' 4 3
« W3
. o

£ Y
The equation 1s homogeneous of degree 1, Using the tranaformat{og “¥=ux, dy = vdx + xdy
and dividing by x, we have (™

N 3
vdr + xdv - vde— V1~v2 dx = 0 or  xdv -0 de = 0.

% 3

’ dx
When the variebles are separated, using the 1ntegratinK{§ctor dv -

1
& wWl-v vV1-v? o

NS
Then arc sinv - lnx=1InC or are sipv - dnfCx), and returning to the orlginal va-
- InCr) ortGr'- oTC sin y/x

=0,

riables, using v = y/x, arc sin

L

~ $
Lt

L QY

y Y\ de - Y gy -
9. Solve (2x sinh ¥ * 3y cosh Dydr - 3x f‘{sh Tdy = 0.

¢ &\
The equation is homogeneous of de}ree 1. Using the standard transformation and dividing by

x, we have ~2.8inh v dx ~ 3x coshv dv = 0.
A\ S/

Then, separating the v&r'ﬁb’les, 2
%.x’

Integrating, 2 ln};\h 3 1ln sinhv = 1n C, xz = C sinh’ v, and x2:=C sinhzi %
“\'¢

;dx_‘ _ 3 cosh v
sinh v

= 0.

o9
1). Solve (2r+3y)d¥ + (y-x)dy = 0.

The equation is homogeneous of degree 1, The standard transformation reduces it to

(2+3v)ds + (v -D(vds + xdv) =0 or (v%+ 20+ 2)dr + x(v - Ddv = 0.

Beparating the variables, d‘_x + _v:l_ dv = é + % 2v+2 dv - 2dv = 0.
x vis2u+2 x viiov+2 (v+n?+1

Integrating, 1lnx + 1n{v2+ 2v+2) - 2arctan(v+1) = C,,

x+y _ C

ln xz(v2+ 2v+2) ~ 4arctan(v + 1) = C, gnd ln(y2+2xy+2xz) - 4 arc tan
x

11, solve (1+2ex/y)dx + 2ex/y(1 —;)dy = 0.
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The equaticn is homogeneous of degree 0. The appearance of z/y throughout the equation
suggests the use of the transformation =x=vy, dr = vdy + ydu.

Then (1+2 " )(vdy + ydv) + 2¢°(1~v)dy = 0, (v+2e¥)dy + ¥(1+2%dy = 0,
L]
d_y . 1+ 2e i

¥ v+ 2e?

and = 0.

Integrating and replacing » by x/y, Iy + In(v+ 2:¥y - ln€ and x+ 2yex/Jf = (.,

LLINEAR BUT NOT HOMGGENEOUS,
12. Solve (x+y)dx + (3x+3y—dy = 0.

The expressions (x+y¥) sind (3x + 3y) sugegest the transformation x+y =\\€.

We use y = t-x, dy = dt-dx to obtain ¢dx + (3t -4){dt~dx) ,=.'(Jx
or  (4-2t)dx + (3t-2)dE )= 0
in which the variables are separable, A\
3t -4 >’

Then 2dx +

dt = 2dx - 3dt + ~2—2?dt = 0\

Integrating and replacing ¢ by x+y, we have \\
% -3t-21n(2-1t) = C,, 2x-3(x+y)-21n(2 —x\—.f)"= C,, and z+3y+2In(2-x-3) = C.
. XNV

N/
1 3
&l ¢

13. Solve (2¢ -5y+3)dr — (Zx+4y-6)dy = 0. N

3

First solve 2x-5y+3 =0, 2¢x +4y —6':;" 0 simultaneously to obtain x=h=1, y=k=1,

The transformation - x=x' M= x4+ 1, dr = dx'
Yo k= y'+ 1, dy = dy’
N

reduces the given equation ton (2x'- Byfydx' - (Zx'+ 4y")dy' = 0

which is homogeneocus of glegx",eé 1, {Note that this latter equation can be writiten down without
carryipg out the detai'lgof the transformation.)

o, &/

Using the trans\f&ﬁ’létion y=uvx!, dy'=vde'+ x'dv,

we obtain (2.’—.‘.5v)dx’— (2+4n(vde’+ 2/ dv) =9, (2—7v—4v2)dx’—x’(2+4v)dv =0,
@ 2l dx’ 4 dv 2 dv
} h— — pep— — = -
and finall = + 3 Tl AT 0

Integrating, Inx’+ %ln(tlv -1 + gln (v+2) = 1aC, or x’5(4v—1) (v+ 2)2 = (.

Replacing » by y/x', (&' ~xD)(y'+ 27 = C,
and replacing =’ by x -1 and y' by y ~1, we obtain the primitive ({4y-x-3)(y+ 2.:-3)2 =C.

14, Bolve (x-y-l)dc + {(dy+x-1)dy = 0.
Solving x=y-1=0, 4y+x —-1=0 sinultaneously, we obtain x=h=1, y=k=0.

The transformation x=x'+h=x"+1 dx=dx
y=y'+k=y , dy=dy
reduces the given equation to (x’—y")dx’ + (4y'+ x')dy”’ = 0 which is homogeneous of de-
gree 1. (Note that this transformation x-1= x’, y=y’ could have been obtained by imspection,
that is, by examining the terms (x —y-1) and (dy +x ~1).)
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Using the transformation yizux!, dy'=vdx'+ x'dv

we obtain (1-vide'+ (dv+ Dy{vde' + x’'dvy = 0.
! !
Then E{x—+4v+1dv=ét-—+§av du+_._d”_.=0_
x! 402 ¢ ] x! il 402+ 1
2

In x' + ﬁln(4v2+ 1) + ¥ arctan 2v = C,, ln x' (4v2 +1) + are tan2v = (,

2 2 ! 2
In¢4y’ + x') + arc tan & . C, and ln£4y2+ (x-l)z] t Brc tan yl = ()

x' E

FORM y fixyrdx « xg(xy)dy = o,

15, solve y(xy+ lyde + x(1+xy+x%y*)ydy = 0. \\’\
- vix %
The transforwation xy = v, y=ux, dy = Jﬂ-z—i—— )
x O

reduces the equation to ;(v+l)dx + x(“”*”ﬁ% = 0
EA N

o N Y

which, after clearing of fractions and rearranging, beqom:es v’ dr - x(1+ v+ uQ)dv = 0.

K7
Separating the variables, we have & s&"f dv _dv | ¢,
x 7 N v
Then In x + S lanv = C,,.’:LN 2! ln(g) -2 .1 = &7,
21.-'2 L A S x
and a’;{i}:y -2y - 1 = Cx2y?,
¢ '\\
16. solve (y -xyz)dx - (x+ xz:!'bé{y = 0 or  y{l-xylds -~ x(1+xy)dy = 0,
& N
The transformtionx.{y.ﬁ v, ¥y=uv/x, dy-= :_:_d_v—_;:ﬁ reduces the equation to
&/ 4
O
AN -
YaSoidr - w14y BRI - x(1+v)dv = 0.
‘5\”.' x2
:»\‘ "; 2
4
Then \’2% --I-Tt—!-idu = 0, 2lnx~-1lnw=-v = 1n C, %_=C¢U. and x=CJ'-‘-’xy-

1%. solve (l—xy-f-.tzy?)dz + (x,y—xz)dy =0 or y(1—1y+x2y2)dx + x(xzyz—xy)dy = 0.

xdy=-vdz

The transformation zy=w», y=vfx, dy - — reduces the equation to
x
E(l—vn:z)dx + z(uz-—u} x dy '; vdx =0 or vdx + x(vz—- vidy = 0.
k]

Then % + (v=-1Ddv = 0, 1n x +Jzuz- v = (, and Inx = xy-ixzye'* C.
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MISCELLANEGUS SUBSTITUTIONS,

18, solve g—i—' = (.)"-4::)2 or dy = (-y—4x)2dx.

The suggested transformation ¥ —4x=v, dy=4dx+dv reduces the equation to

ddv + dv = vodx or dx — dv = 0.
viag
Then x+ 4% 2=¢C, 1n2%2%-1mC-ax, 232-ce™, ana L2EPZ. %
v=2 v—2 v=-2 y-4x -2

19. solve tan’(x+y)dr — dy = O.

20.

21.

The suggested transformation x+y = v, dy = dv—dx reduces the equatlit{a to
N\
tanlv de - (dv—ds) = 0, dv - — — =0, or dx—gésﬁydvzo.
1+ tan®y N\

Integrating, x — J_sv - ;';sin 2v = €y and 2(x-¥) = ( ‘ m 2(:: +¥).

&y
2 ¥ 2 % 9,
Solve (2+ 2 yOydx + (x°y +2xdy = 0. v
2 % v2 \\ v 4°
The suggested trapsformation x"y =v, ¥y = \ dy = -;dv# ——;—dx reduces the equation
XN x
to i. v
o2 492
(2+2v}—a’x + x(u+2)(— dv — --.—’b&) =0 or v(3+v)dy — x{v+2dv = 0.
x 5
Then E—ggf -l—dg——=0. 31!33:—21nv—1n(v+3)=1n61. x3=Civ2(v+3).
x 3v 3v+3
%Q 2 %
and 1= Cyxy(x & + 3) or xy(xy +3) = C,

Solve (2t + 3"~ Dx drx4 (3:; +2y°_8yy dy = o.
The suggested transférmation x%=u, y = v reduces the equation to
§ (Zu+3v-Tde - (3u+2v-8)dy = 0
which is 11neg£’l;iat not homogeneous.,

The tr sfo‘rmatzlon u=2s+2 v =t+1 yields the homogeneous equa.tion (2s+3t)ols — (3s+ 28 ) dt
=0, and t ‘transformation = = r¢, ds = rdt+ tdr yields 2(r —1ydt + (2r+3)tdr=0.

dit 2r+3 dt 1 dr 5 dr
i i * 22— + di = 2— -~ = + = = .
Separating the variables, we have . 21 r " 3 Tr1 2 -1 0
Then 4 lnt -Ingr+1)+ 51ln{r-1) = InC,

AU N T L CUL e VA At st R SR L I I R UL

r+1 s+t u+v-3 2+y2-3

99, Solve x (xdx+ydy) + y(xdy-ydx) =

Here xdx+ ydy = 3d(x?+y? and xdy- ya’.x = z%d(y/x) suggest 2+ ¥ =p2. ¥/x = tan @,
or x =P cosB®, y=p5ind dr-= -psin9d9+c059d,0, dy = ¢ cos 8 48 + sin € dp.

The given equation takes the form p- cos’0 (o dpy + p s:‘mG(,O2 dgy = 0
or dp + tan© sec B dB = 0.

Then p+secO=C Veiry? h =G, md @erhaen? = G
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SUPPLEMENTARY PROBLEMS

23. Determine whether or not each of the foliowing functions s homogens
ous, state the degree,

a} L xy,

homo, of degree two. ¢} arc sin xy,
by 2, not homo, N xe ¥, yex/y.
x +y2
x
xy . g) Inx - Iny or In-,
c) rerd homo. of degree zero. Y
Xty h) y‘x2+2xy+3yz.

d) x+y cos% » homo, of degree one.

1) x8iny + ysinzg,
l"
A

3

E 3

Classify each of the equations below in one or more of the r(:llu,*‘ifggw;tat
{1) Variables separable \\\ '

(2) Homogeneous egquations N0

(3) Equations in which M(x,y) and N(x,y) arelinear but no
(4) Equations of the form y f(xy)dx + ngMdy = 0

(5) None of the above apply. (

O

N oayderxdy = 0 \ Ans. (1) (D), o
25. (1+2y)dx + (4—x2)dy = Q .‘f”" ) (I

26. yzdx-xzdy=0 \\\ )y, (), o
2T (L+y)de - (1+2x)dy = 0 \x‘ (1 (3
28. (xy2+ Yidx + (xzy-x)dyx:\':'(:):” {4)

29. (z sin % - ¥ cos %}@z\+ x cos% dy = 0 {2y,

30. y'(x"+ 2ydx + “(g{§;3}(ydx ~xdy) =0 (5)

31. ym\”dg;;\;’x(x + Vet Pody < o (2,

/

32, (x+y+1)dx + (2x+2y+ Lidy = 0 (3)

33. Solve each of the above equations (Problems 24-32) which fall

Ans., 24. x'y =¢ 28, y = Cxe™”
2 2~x
25, (1+2y) = ¢ 222 Y .
( ¥) 5T x 29. x sin = C
26. y = x+ Cxy 3. Cx - Vx2ey? = x Ing
27. (1+) =C(1l+ x) 32. 2 + 2y + In(x+y) = C

Solve each of the following eguations,

34‘- (1+ 2y)dx

~ (4-x)dy = 0 Ans, (x-4)2(1+2y) = C

\n'&c homo,

EQUATIONS OF FIRST ORDER AND FIRST DEGREE

ous and, whep homogeng.-

not homa,
homo, af degree one,
homoe, ot degree Zero,

homo. of degree one,

3

eguries;

t homogeneous

I degree one

f degree two

of degree one

of degree two

in categories (1)-(4).

Vxls yz - x}
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. oxyde+ (1+x2)dy =9

cotB8 dp + pd6 = 0

(x+2y)dx + (2x+3y¥dy = 0

2 dy — 2ydr = /xl+ 4y2 dx

(By~Tx+ Tydx + (Ty-3x+3)dy = 0

zydy = (y+1)(1-x)dx
(yz-—xz)dx + xydy = 0
¥(l+ 2xy)de + x(1-xy)dy = §

de + (l—xz)coty dy

Q

I

(x3+y5)dx + ?.zyzdy 0

(3z+ 2y + ydx - (3x+2y-1)dy = 0

Ans, y2(1+xz) =C
Ans. p=C cos 0
Ans. Jt:2+4::c3.’+:_7‘.,)(2 = C
Ans, 1+4Cy-Ch% =0

2 5
Ans, (y—-x+1) {y+x-1)Y = C
Ars. y+x = InCx(y+ 1)

Ans. 2ac2y2 =2+ C

Ans. y = Cae /™
&
2 l-x N
Ans, siny = C
l+x N}

7
o P

Ans. x' + 4:_)'3 =G W

Ans. 1n(i5z + 10y 90y + g(x—y) =C

N/

\/
In esch of the following, find the particular solutich inql,i*c@ted.

46.
417.
48.

49,

50.

51.

52.

xdy + 2ydx = 0; whenx =2, ¥

(x2+ yz)dx + xydy = 0; when x
cosy dr + (l+e )siny dy =

(y2+xy)dx - xzdy = 0; when x

= 1. ’S:}\ Ans, z'y =4
=1, y =-L 3,3:.:?‘:" Ans, x' + 2y =3
0; When“x’;'é;“y = /4. Ans. (1+ex)secy - 2v2
= '1,'@}; 1. Ans, x = elﬂx/y

O

N

Solve the equation of Prohlen(éb"using the substitotion y = wx,

o\‘ b4
~C

Ans. xzy Inz = ¥y + % - {rf = szy

Solve yf = -2(02x+ @w’using the substitution z = 2z+ 3y,

ay
N
gy

, 3
/" \ w
) 2

4

+

1+ 8223y | g%
1 - v3(2x+3y)

Ans,

23

Solve (x — 2siny + 3dr + {(2x — 4 8iny - 3)cosy dy = 0 using the substitution siny = =z.

Ans. 8siny + 4x + 9 1n(4x - 8siny + 3) = C



CHAPTER 5

Equations of First Order and First Degree
EXACT EQUATIONS AND REDUCTION TO EXACT EQUATIONS

THE NECESSARY AND SUFFICIENT CONDITION that

1 M(x,yydx + N(x,y)dy = 0
be exact is
2 A _ W

3y ax

. \\’\
At times an equation may be seen to be exact after a reggﬁu{:zing of its terms,
The equation in the regrouped form may then be integrgtgﬂ term by term,

For example, (x?-y)dx + (Y’-—X)dy

1}

0 is exflxcj\ts\s.lnce

M3, 2, 8w
—_— = — - = -1 = —2 g = -
oy 3Y(x » ox R Ox

\,/
This may also be seen after regrouping thus’:bxzdx + y’dy - {(ydx + xdy) =0,
This equation may be integrated term bys¥erm to obtain the primitive x3/3 +

¥¥3 -xy = C. The equation (22— x)dx ‘kf(x’«- ¥)dy = 0, however, is not exact
. oN N

slnce — = 2y # 2x = =, ‘ See also Problem 1.

oy 9x NN

IF 1) IS THE EXACT DIFFERENTIAL oKihe equation u(x,y) = C,
du = —%.dx + Egdy = H(x,y)dx + N(x,p)dy.
9X > 3%
. 2O
Then hdx = MOQWYdx  and  wlay) = STHOcyyde + o0y,
O
x N\ ¥ .
where [” indicates that in th
and ¢() isthe constant (wit

) )
3
\,

e integration y is to be treated as a constant
h respect to x) of integration., Now

O _ 3 . gx @b _
= ay{f H{x,y)dx} + > - K{x,y)

from which % = ¢'(y) and, hence, &(y) can be found. See Problems 2-3.

INTEGRATING FACTORS. If 1) is not exact, an integrating factor is sought.
o N

Ay ax
a) If ~—N-—— = f(x), a function of x alone, then ejﬂx)dx is an integrat-

ing factor of 1).

24
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H W

¥y Y
If —— = - ,
P ()

grating factor of 1).

by If 1) is homogeneous and ¥x+ ¥y #0, then

c) If 1) can be written in the form y f(xy)dx + x g(x)dy = 0,

# #(xy), then 1

a function of y alone,

1
¥x+ Ny

1

xy{f(xy) - g{xy) }

#x - Ny

then e

25

d
Jemady is an inte-

See Problems 4-6,

is an integrating factor.
See Problems 7-9.

where fixy)

is an integrating factor.

See Problems 10-12,
{\

A\
d) At times an integrating factor may be found by 1nspect10n after regroup-
ing the terms of the equation, by recognizing a certam. g’roup of terms as

being a part of an exact differential,

GROUP OF THRMS

INTEGRATING FACTOR

For example:

ON
_EXACT DIFFERENTIAL

%
7 %3

xdy - ¥y dx 1
xdy - ydx -lz-
Y
xdy - ydx f.&\
=
p '\\,.3
.oo...oQ 1
xdy — ydx A
oD A
:"\‘."'
\™
xdy +>{z 1
(xy)
1
xdx + ydy P E——
=2+ yH"?

e) The equation x"y’(my dx+ nxdy) + x"y" (uy dx + vx dy) = 0,
2,0, 4,V are constants and mv—nu # 0,

w

xdy—yde _ Ly
2O
N\
O ydi—xdy _ di- 5
Y - T iy
$ Y
_oE L ogmd
x dy —ydx
z
zdy-ydx | d = d(arc tan %)
22+ 4t 1+ (%)2 x
M = d.{..__....‘..l...._..l_}, if n#1
(xy) (n -1y
XYy (nen), if n=1
¥
xde+ydy dy -1 Y, iEnfl
(24 yH)" 2~ 1) (2 + y2)™L
xdsrydy | d{f Inx2+yH3, ifn=1
x21 y2

See Problems 13-19,

where r,s,mn,

has an integrating factor of the form

"'yﬂ The method of solution usually given consists of determining = and 3
by means of certain derived formulas. In Problems 20-22, a procedure, essen-

tially that used in deriving the formulas,

is followed.
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SOLVED PROBLEMS

1. Show first by the use 2) and then by regrouping of terms that cach equation is cxact, a

2
D (455 = 2nyds + @'y - dy < 0 d) 2x(ycx2— Ldr + c"zdy -0
by (3¢ "y - 2x)dx+ > dy = 0

nd solve,

53 oA bz oy
S 4 d * 3 N =
c) (005y+ycosx)dx+(sinx—xsiny)a‘y=0 ) (Bxy v dxTyiydy Gxy e Sxyydy = 0

oM

a) By 2): - = l2xﬁy2 - 2x = -;1\’ and the equation is exact.
dy Ox
By inspection: (415y5d1 + 3x“y2dy) - (2xy dx + xady) = d(xuys) - ,;(12),) = 0
The primitive is 1'y’ - z%y = (.
.\{\
b) By 2: B—M = 385;: z B_N and the equation is exact, O
Ay ox AN
By inspection: (aeixydx + e’xdy) -~ 2x dx = d(e’xy) - d{x?; = 0,
9.\ I
The primitive is e5xy -5 = \s
a oN \
¢) By 2y: — = =~ 3siny + CO8x = and the equation is exact.
Y '\
3)’ Bx 0:{'

"\

By inspection: (cogy dx — x siny dy) + (i’jcbisx dy + sinx dy)

= d{x cos y) + d(y sj.r}:x) = 0. Theprimitive 1s x cosy + ysinx = C.

~ 3
N

M 2 W
d) By 2): — = 2xe = — and the equation is exact,
Ay ox o\\
N\
2 ¢ Q{q} 2 2
By inspection:  (2xye dx +“e* dy) - 2x dx = diye”™ } - d(z™y = 0,
- - x2 2’
The primitive is ye »\&" = C.
M g W
e) By 2): — = }Qx}yz + 20x5y“ = — and the equation is exact,
3y ..\\ ox
By inspeql:\iﬁi’if‘ (&5y3dx + 3xbyedy) + (4x5y5d.z + 5x“y“dy) = d(xbys) + d(x“y5) = 0,

The prim\rtfve is xbf + quj = C,

2. Solve (2:54-3)')0'.: + (3x+y-1ydy = 0,

aif = 3 = B—J-T and the equation is exact,
3y ox

x
Solution 1. Set w(x,y) = J (20 + 3y)dx = 42* + 3xy + Bly).

a
Then _-ai‘ =82+ (0 = Nay) = 3x+y-1, ¢y = y-1, dy) = 55"~y
¥

and the primitive is ﬁz“i» 3;y+§y2_y = C, or  + 6xy + y2 -2y = C.

Solution 2. Grouping the terms thus 2:'dr+ ydy — dy + 3y dx + x dy) = 0

and recalling that yds + xdy = d(xy), we obtaln, by integration, i;“ + J‘;y2 -y + 3xy= (G
as before.
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2 x5’

(ye 0.

2
9. Solve + 4x5)dx + (2xyexy - 3y2)d_y =
M 2 2 \
B_ = 2yexy + 2xyiexy aﬂ
Ay x

and the equation is exact.

x 2 2
set px,y) = J 2 + adydx = &7 4 1t v By

.alu‘ 30'2 ' xy2 2
a—y=2x:ve + @y) = 2x2ye”” - 3y,

Then () = _3y2,

2
and the primitive is R AN y3 = C,

2
The equation may be solved by regrouping thus 4x3dr - 3y2dy + (yze’c)f dx + nyex

2 2
and noting that _'yzechr dx + 2::_')(&3"Jf dy = d(exjr Ye

()

27

yidy)=0

4, Solve (x2+y2+x)dx + xydy = 0,
M 2y, o y; the equation is not exact, '\"’;’ﬂ
3y K7\
R
a 9z _
sowever, Y 2oy _ 1L gy md'x:\\gff(x)dx Jax o nx

]

N ay
N
is an integrating factor. Introducing the integfat‘ing factor, we have

orty Cxde + xtdx + (xyzdx + xay dyy = 0.

(x5+xy2+ xz)dx + xzydy =0 IR

Then, noting that xyzdz + xzy dy = djé’iayz). we have for the primitive

3
+

w My

? 4
&

B. Solve (2cy'e” + 2::_'y5 + y)’dé:f':,.‘(xzyuey - <%y < 3ody = 0.

L\
o 'Exzy.\\ C,y or 3x + 4% + 6x2y2 = G
¢(\J

2xy“ey - ?.1:y2 — 3: the equation is not exact,

-g{y).

I
* gry'e” + 3({“?:&4 ﬁxy2 + 1, A
e s 5

."\
OY M N
However, oM _ W gry’e” + gxy> + 4  and 9y  dx _ 4 _
¥ Bz M ¥

Then efg(y)dy = e—4fdy/y = 9_4 ny . 1/y* is an integrating factor amnd, upon introduc-

ing it, the equation takes the form

2
(ze” + 2% + Lyax + 22 - ’—‘; - 3%)dy = 0 and is exact.

¥ ¥2 oy
x ¥ xz 1 2y x2 x
set u(ry) = J e+ 2T+ yde = xel v — 4 S ).
Y oy y oy
2 2
Then 'a_,u. = xzey—x——S-x—“+¢"(J') = xzey——;-—:i-x;-
oy 2y y y
2 12 X
and the primitive is =x e+ v = = G
b _'),r3

¢ =0,

$(y) = constant,
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F

2
6. Solve (2x5y2 + szy + 2:3‘2 + xy“ + 2y)de + 2(y5 + x'y + x)dy = 0.

%‘-u = Qzay voax 4 4xy + uys + 2, g—‘! = 2(2cy + 1); the equation ts not exuct,
¥ X

oM o

3. T 2

% ox = 2x and the integrating factor is efhdx = e” . When It fx Introduced, the

N
given equation becomes ,
2

(215y2+ 4x2y+ 2xy2+ xyI| + 2y)cx dx + 2(y5+ J:zyuu:)ex dy - D und iy cxact,

H
X
Set pix,y) = f (Zt!'yz + 4x2y + 2::y2 + xy“ + 2_)")c)r dx
x 2 x 2 x 2
= f {21:_)!2 + 2x5y2}ex de + f (2y + ixzy)ex dx + _J’\'\xyqex x
2.2 2 x? v ol A
= xye o+ 2rye o+ dy e+ P(y). ¢\
{u\} e
2 2 2 W 2
Then .E-)E = 2.:2yex ¢ 2™ 4 2y5ex + Pty = 2(y5 + <}y{| e, Hyy -0,
9y . K7\
and the primitive is {2::"’3;2 + dxy + yu)ex = X ,\
O

T. Show that

+ where Mx + Ny is not 1dentgwqa’11y zero, 18 an integrating factor of the ho-

Mx + Ny
mogeneous equation M(x,y)dx + N(x, yidy =0 of degreo n, Investigate the case My + Ny =0 iden-
tically, N
M N
We are to show that dr + —~==_dy = 0 {5 an exact equation, that 1s, that
Mx + Ny Hx v Ny
‘"a\\ ¥ 3
Noet,y - 28
\ oy Y Mz + Ny 9% My + Ny
N om W N MW o N
MW M My, Ny &2 _ v _ gy ON
_'cl( o . ::\M.y 3 3 yay) ] yay )’ay
Oy Mx+ Ny \\‘ (Mx + Nyy? (Mx + Ny)?
and ~.“:3
~O7 ey oy Wy, W Me &y N M
3, NN Ax Ox dx Ox oz
oy : T
* (Mx + Ny)? (Mx + Ny)
oM oM aN onN
Nex & - M(x & i
E( i ) - —?l( N y = (13" yay) (’ax”ay) . NMy - M) 0
Ay Mx + Ny S Mx+ Ny (Hx+Ny)2 (M +Ny)2

(by Euler’s Theorem on homogeneous functions)y,

If Mx+ Ny =0 identically, then ; = - % and the differential equation reduces to ydx — xdy

= ¢ for which l/xy is an integrating factor,

8, Solve (x“+y4)dx -xyjdy = Q,

1
Mx + Ny

The equation is homogeneous and

is an integrating factor. Upon its intro-
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= . - q 5
duction, the equaticn becomes (:—lc + Z;)dx - ¥ gy = 0 and is exact.

x
Ly
set pxy) = S G + —)dx = Inx - ;L + .
. 4 x'&
Op v y’
Then 5 = - i Py = -, Sy =0, and the primitive is
Y P x
Lt
Inx - Z 3(—“ = C1 or y“ = 4xu Inzx + Cxq.
x

Note. The same integrating factor is obtained by using the procedure of a) above, The equa-~
tion may be solved by the method of Chapter 4.

_ .\&\
9, Solve y’dx + (x° —xy - y)dy = O. ¢
The equation is homogeneous and 1 = ! is an 1ntegrat1ng factor,
Mx + Ny 2_ 2 N
yix"-y") \\ A
N
Upon introducing it the given equation becomes 2 Y zdx +'\E i y dy = 0 which is exact,
T AN o
x 1%, 1 Ly
= J = i I & - =~ 1p =Y
Set  iitz,y) I xf‘,.yzdx = 2f < \’R*‘J){dx sln * G
a"‘
2 - e 1 1
Then a_jLL - 2x + Pl = u‘Ly— y - zxz’ Py = = By = Iny,
Y -y y(xc Syhy Y xfey Y
A . | - ‘“ 2
and the primitive is gz ln :+y +' ].xk‘y = 1n Cy or (x-y)y = Clx+y).
< '\\,.:
1). show that " when Mx.—,N}? is not identically zero, is an integrating factor for the
X~y PN\Y;
equation Mdx + Ndy = y){ﬁ&y)dx + xfg{xy)dy = 0. Investigate the case Mz~ Ny =0 identically.
The equation “z’\\ y f1(xy) dr + % fo (x9) dy = 0 is exact
o) S wylfi) - faen} xy{fa(xy} = fo(xn)}
since \/
2(fi~f2) g _ fax (afi _3_fg_) —J2 ah + fi an
_3_{ iy - i ¥ - . ,
%y x(fy-f2) 22 (fy - fo) x(f1=fo)?
afz afr Bfg sz Bf:.
3 fo , - )’(fi"'fz} .fe.')’(ax ax i fi fa
9% " y(fy~f2) P ifr-f2" y(fi-fg)
and
f2(_y?j.1_' + ;a—f}-‘-) + fi(yéfl - xaé}
B3 f gy 2Ly - % el % % ,,
3 xfr-f2) 9% yifi-f2) ayfe - f2)°

This is identicslly zerc since gﬂm = x gf—(x!-)- -
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If Mc~Ny=0, then

==
"
e

and the equation reduces to xdy + ydo - 0 with solution xy=(,

1. solve y(x%%+ 2)dx » x(2~2x2y2)dy =0,

1 L ) _
" ——. i5% aninte.

The equaticn is of the form yfilxy)dr v xfo(xy)dy = 0 and
M -hy 3,50

grating factor. 7
x? ? 2 2—"12?2
Upon introducing it, the equation becomes _y....*_dz + -*_";dy ] abl 15 exact,
3.r5y2 3x‘y
2 2
x X 2 .
Set w(x,y) =~ I (f—y"‘+—2)d-! = f {—l $o—jdy = ! Ina - — Syy,
3xty? 3x axdy? 3 Ax?y?
3 2 222 2 ~ 2
Then £ - 2 ity s L ptyy - - =, '\\(,(y) - lny,
3_7 3::2y5 3:2y5 3y A
O,
and the primitive is llnx S Iny = 1n C, or \ -""f.}'?cl' R
3 222 3 XY
) ~\ 3
0:0\
The equation may be solved by the method of Chapter 4,.8"
33 ‘\\“
12. solve Y(2xy + dx + x(1 *2xy -x'y")dy = 9, &?
SO
The equation is of the form yfitay)dz + xjrq,(}y)d-.r =0 and ! - ! i an inte=
o\ ¢ ;'ffx-:\"y P y"
grating factor,
Upon introeducing it, the equation bep'c;m]é‘s { 22 * 1 yedx + 1 + 22 - ul)dy = 0 and
is exact. N Pyt aty Oyt 1%yt
O
T2 ce\p
St wry = 5 &GS - oL L1
By2 'y 222 3dyd
i
Then % . e S SR TR Y B -2 g - -y,
y D3y Syt 2ty Y Y
‘\i“i 3 3
and the primitivpzx} ~Iny - 212 _ _%_; _— or y = CeBFIEN/GxTY)
»\ X%y 3x 'y
V

13. obtain an integrating factor by inspection for each of the following equations.

a) *(Z:c_v“ej'r + 2::)!5 + Yydx + (xzy“ey - x2y2 - 3xydy = ¢ (Problem 5}

b) (x%y® + 2pydx + (2¢ - 2°y%ydy = ¢ (Problem 1t)

c) (2::y=z + ¥)de + (x + 2x2y - x“y’)dy =0 (Problem 12)

a} When the equation is written in the form
y“(&eydx+x2eydy) + 2‘!_}’5(1: - xzyzdy +yds - 3xdy = 0

the term yu(heydx+12eydy) = y“(2n exact differential} suggests that 1/y* is a possible

integrating factor, To show that it is an integrating factor, we verify that its introduction
broduces an exact equation,

b) When the equation is written in the form 2y de+xdy) + x2y5d1 - 2x5y2dy = 0, the term
(¥ dx + xdy) suggests V(xy)k as a possible integrating factor. An examination of the remaining

terms shows that each wi]]l be an exact differentia] if k=3, i,e,, l/(zr;v)3 iz an integrating
factor,



14.

15.

16.

17-

18.

19.
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¢) When the equation is written in the form (x dy + ydx) + 2xy(x dy+ydx) - quady = the
first two terms suggest 1/(:.7)". The third term will be an exact differential if & = 4;
thus, 1/(xy)* is an integrating factor.

Solve ydx+ x(1—3x2y2]dy =0 or xdy+ ydr - 3x§y2dy =0

The terms xdy+ydr suggest 1/(xy)® and the last term requires k = 3.

Upon introducing the integrating factor  the equation becomes x_w - E dy = 0
(xy)5 xiyﬁ Y
- 2.2
whose primitive is e S 3lny = €y, 6lny = 1nC - ! or yb = Ce—l/(x 7,
2x2y2 xzyz
.\\\
Solve xdx + ydy + 4y5(x2+y2)dy = 0, :::.’

No/

The last term suggests 1/(x°+ yz) as an integrating factor..\

¢\

Introducing it, the equation becomes w + 4?4}"\!‘ 0 and is exact.

x +;y2 A,

L]
The primitive is éln(x2+y2] + y“ = 1In Cs cr:\\.{x2+ _);‘,)eEJJ = C,
NS
2 o

Solve xdy - ydx — (1-x")dx = O. s W

Nk
LN

Here 1/x7 is the integrating fmtor‘.,%iﬁée all other possibilities suggestedby x dy-ydx
render the last term inexact. R

“

L\ - v dx
Upon introducing it, the equatxim\\)ecomes f..dlzy_. - (iz - 1dx = 0 whose primitive
¢ E\J x x
i : =
is l+;+x=C or y&P+1 = Cn
s e N

A\

N/

o 2 22z
Solve (x+x + 2x23<111§“)dx+ ydy =0 or =xdc+ydy+ (x +y) dx = 0.
O\
An integratiffré factor suggested by the form of the equation is -—-—1——-— « Using it, we
e N (x%+ ye)z

e \

have M + dx = 0 whose primitiveis - -—1-— +x =0, or (C+ 2x)(x2+y2) =1,
(x2+y2}2 Z(x2 +y2)

Solve x2 sz + xy + 1-2%2y% = 0 or x{xdy+yde) + Y122 dx = 0.
1 reduces the equation to the form M + d?x
x/1-2%y° V1-x2y?

whose primitive is arc sia(xy) + lnx = C.

The integrating factor

z2_ 3
Solve & - ¥TE ZF o O+ xy’ - y)yds + (Y +Ly+xydy = 0.
x+x2y+y

When the equation is writtem thus (xz + yz) (xdx+ydy)+xdy-ydcx=0, the terms x dy- ydx
suggest several possible integrating factors. By tridl, we determine 1/(x2+ y2) which reduces
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x dy -ydx
2
: xdy-ydt | g+ ydy+—~——-—x -0,
the given equation tothe form xdx + ydy + x2e y? 1 (%)2
F Y _ .
The primitive is gx +gy + arc tan-— C, or x +y* 2 arc tan T C.
Solve x(dydr + 2xdy) + ya{sydx + 5xdy) = 0.
a B s
Suppose that the effect of multiplying the given equation by x y i8toproduce an eruation
e+l .3 +3
A P a2 Yy + (3 S PRI dy) = 0
each of whose two terms isan exact differential, Then the first term of A} Is proportionul to
K\
e 8 N\
B) d(xmzyﬁﬂ) = (a+x atl ldx ¥ (ﬁ+1)x y dy, X ’
that is, . it}
: o+ 2 ﬁ + 1 A\
= and a-20=0. \
© 4 2 A \\
Also, the second term of A} is proportional to v
- +1 %
mn d(le y,8+u) = {o+ l)xayﬁ dx + (8+ 4);“ y‘?édy,
O\
that is, i\\\'
E} a+ 1 =‘B+4 B.Ild &Sg,_3ﬁ-7.

Solving a-28=0, 5a-38=1 simuitﬁﬁeously. we find a = 2, 8= 1.
When these substitutions are mad‘e\\in A), the equation becomes
¢. &\

X\
(4"5’24"4 2x'ydy) + (3yde+ 5¢°y'dy) = 0.

The primitive is N B N

Solve (8ydx +~§y\'ﬁy) + x2y5(4ydx + 5xdy) = 0.

...\' :
Sunpose'tl}at the effect of multiplying the given equation by xays is to produce an cquation

v

2 B+l +2
o @y x4 e Yy ¢ @ e v 5%y = o
each of whose two terms is an exact differential. Then the first term is proporticnal to

m+l S41 1
By dix "y ) = (ct+l)xmyﬂ+ dx + {ﬁ+1)xa+lyady,
that is,

a+ 1 +1

C} S = ‘{3-8—- and a-58=0.

Also, the second term is proportional to

a+3 A+ 2 8
D Ay ) = @y de + (Brayat Py,
that is,
a + 3 + 4
E) . - B . and 5a - 48 =1,

Solving a~B=0, 50-48=1 simultaneously, we find o = 1, 8

1
-
.
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¥hen these substitutions are made in A), the equation becomes
(8xy°dx + 82"y dy) + (&°y dx + 55y dy) = O.

The primitive is sty v 2y - C

Note, In this and the previous problem it was not necessary to write statements B) and D)

since, after a little practice, the relations C) and £) may be obtained directly from A).

22. Solve z°y (2ydx+xdy) - (5yds+Txdy) = 0.

A

Multiplying the given equation by xayﬂ, we have

L at +1 ) 1 1
(?.tajyﬁ dx + xM y8+5)dy - (5xayﬁ+ dx + 7xa+ yﬂdy) = 0, ~
AN\
If the first term of A) is to be exact, then cr.+24 = 3:4 and..."éz.”.;-‘ 28 = 4,
. a+l _ B+1 N
If the second term of A) is to be exact, then —5~ = - xo\\a,ntl Ta - 58 = =2,

W

Solving a-~28 =4, Ta-583 = -2 simultaneously, we finf d.: -8/3, 8= -10/3.

Then, from 4), (2::1/5 yﬂjdx + xl}/5 y_1/5 dy)y - (5x;§5;y"?/5dx + 7::"5/5 y-lo/a dyy = 0,

each of the two terms is exact, and the primitive{\ Q\I

2

_ _ R .
§xq/3y2/5 + 3x 5/53( 3 = €y, xqﬁyﬂs + %‘::5{51 (e C or x5y5 +2 = Cxﬁﬂyﬂ.

®

{SUPPLEMENTARY PROBLEMS}

3

23, Select from the following galiations those which are exact and solve,

a)
b)
e)
d)
e)
b
&
h)
1)
D

k)

IN
(2= y)dx — xdy '\*Q\{ Ans, xy =2/3+C
"\
N
y(x~2y)dx -:\«,f;dy =0

W \Y
=ty yelg v xydy =0

o 2 3
2+ ySyde + Sydy = 0 Ans, zxy +2/38=C
2 :
(x + ycos x)dx + sinx dy = 0 Ans, x + 2y sinx =C
28
1+ eze}dp + 2pewd6 =0 Ans, p(l+e Yy=0C

de - val-x2dy = 0

2 2
(2 + 3y+4)dx + (Bx+4y+5)dy = 0 Ans. x° +3xy + 2y +d4x+ By =C
i 4
(4,;53,3 + -1-)dx + (3xuy2 - ;)dy =0 Ang, =x y3 + In{x/yy = C
x
3 z 3
2(u2+ wu)du + (u2+ vz)dv =0 Ans, 20 +3uv+uv =C

2
(x /524y — yyde + (y/=+ ¥ - x)dy =0 s, 2eyyY® ey - €
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Iy (x+y+1)de - (x-y=-3)dy = 0
2 2
m) (x+y+1)d‘r—(y—x+3)dy=0 Am. X +233"‘y + 21-6)’:6
ny csc € tan 6 dr - (r csc 6 + tan"6)d6 = 0 Ans, rcscf - InsecB +C
x+y 2

2 ¥ ooydr 4 [ ¢ 2y 1))dy = 0 Ang, ln—= + (x+1)(y +2) = C

© (X +Y) ) [x+y ¥ e *
2 2 2 2 2 2 2 .

p) (myex y+y28xy N l)d‘; + (x2£x J'+ 2xyexy _2y)dy =0 A.ﬂs. ex Y + exy + X - Y = (,

2. Solve the remaining problems above [b), ¢), g), )] using the appropriate procedure of Chup. 4,

Ans, b xzfy =2 1lnx+C g) y=arcsinz/e + C
o <\
) x“+2x2y2=C 5} 1n‘['¢2+y2-2:+4y+5"-\\rc umy:Z = C
{,; e/

25. For each of the following, obtain an integrating factor by 1n5938f'.§';£l and solve.
a) xdv + ydy = (x2+y2)dx Ans, 1/(:? *‘.’J’?\;;? X .72 = Ce™*
by (2y-3x)dx+ xdy = 0 Ans, a:;\ ,:2; =22+ C
c) (x-yz)dx+2xydy=0 Ans.”lx}}{; y2+xlnx=Cx
d)y xdy - ydr = 327 ("4 y' ) ' Aatg‘\zlf(x2+ vly: arctanyx =z + C
€) ydr ~xdy + lnx de = 0 ,:.‘;’:ﬂris'. 153, y+lnz +1=(x
H @y de - mydy = 0 xf;":“ Ans, 15°; % -y =G
g (y-2")dx = (x*<3xy)dy = 0 .&\” Ans. 1/xy; x/y + lngy'/xY) = €
Ry (x+yydx ~ (x-yydy =0 \\ Ans. 1/¢ 4 y%y; xz+yz . e? AreTan y/x
i) 2ydx-3xy2dx-xdy=0',: Ans. x/yti aly -2 =C
7y yde + x(ly-1ydy =0\“ dns. y/ad; 3y - 2yl - o
k) (y+x5y+2x2)dx i+”\i@;‘!’-'11:!:_)(“+ Bys)dy =0 Ans, 1/¢xy+2); Inixys 2)5 s 20 3J(u = C

N

26. For each of t:,gsffollowing, obtaln an integrating factor and solve.
a) xdy —\y;b:= xzexdx Ans, y =Cr + ze”
b) (1+yz)dx = (x+x2}dy Ans. arc tan y = ln x/(x+1) + C

) (Zy-xﬁ)dx +xdy = 0 Ans. xzy - 15/5 =C

]
d) Ydy+ydi-zxdy=0 Ans. y2+x=Cy

&) (3 -xyydx - (x4 Gxy¥ydy

={ Ans. 3y2 +x In(xyy = Cx
H o3ty + 4’y ~3)dy = 0 Ans. x'y* _ 4y’ =
&) yx+y)dx - x'dy = g Ans, x/y + Inz = C
hy (23+3’CJ'2)0'I + (x+2x2y)dy =9 Ans, xzy(1+xy) =

. 2 2
Y ¥y -2x")dx + 1(23'2—12)!1_7 =0 Ans, xzyz(yz-xz) =

1 . s
27. show that I—zf(y/x) 1s an integrating factor of x dy -y dx = 0.



CHAPTER 6

Equations of First Order and First Degree
LINEAR EQUATIONS AND THOSE REDUCIBLE TO THAT FORM

THE EQUATION 1) ;i’ v yP(x) = 0(x),
X

whose left member is linear inboth the dependent variable and its derivative,

is called a linear equation of the first order. For example,
d . . .
&y 3xy = sinx is called linear while dy + 3xy2 = sin x is not.
dx dx

. Pxydx Py dx Pe) dx TP @

Since i(ye'r ® - & e“r © + ¥ P{x) e'r @ = e x){Q (Ei-z ryPeo ),
dx dx A dx

JP@) dx N\~
e

is an integrating factor of 1) and its primitiyesis

. p '\"k
Yefp(x)dx f@(x)-efp(x)dx dx + C\s\ See Problems 1-'7._

s X

#
BERNOULLI'S EQUATION. An equation of the form N\

OO ¢ i}
% + yP(x) = ¥ O or | g‘?n L+ yPGO = 0
" is reduced to the form 1), namel‘y,:k'"%‘f + v{(1-mPx)} = (L-mQ(x), by the
” v X

N\
- transformation 2\
-nti LN —nody 1 dv
=X = — See Problems 8-12.
YN VY T Toh

¢

OTHER EQUATIONS may be,,gx%ii’uced to the form 1) by means of appropriate transforma-
tions. As in ppeérjﬁhs chapters, no general rule can be stated; in each in-
stance, the prq})er transformation is suggested by the form of the equation,

”\C'j" See Problems 13-18.

o

Vo SOLVED PROBLEMS
LINEAR EQUATIONS.

1. Bolve d_y + 2xy = dx.
dx

JPayde = Joxdx = z7 and e_FP(x)dx = exz is an integrgting factor.

2 2 2 i
Then yex = j4xe de = 2 + C or y = 2+ Ce .
d 1 2
9. solve xﬂ:y+x5+3x2—2x ar —y—-;y=x + 3x — 2.
dx dx
ax . ~lnx 1 iz an integrating factor
JPxydx = —f? = -Inx and e = - i g .
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, 2 e .
1. fl(x2+3x—2)dx = f(x+3-§)dx = Ax +3x-2lnxs iy i
x x

2y =x5+6x2_4,‘1nx+ﬂx.

d 3 dy 1 . _ {
3. Solve (x—Z)ﬁ = ¥+ 2zx-2) or ol ;.___Ey 2x-2)
JPyde = -J & ~In(x =2) and an integrating factor is Sl _'_ .
x=2 _—

. I
Then y(——) = 2 (x~27- 1"2dz = 2f (x-2dr = (x-20+C ory - (3= « Caoy.
x~2 x-

cosx

o &\
4. soive % +ycotx = 5e »  Find the particular solution, given the ?ﬁ‘tiﬂi condityon:

K
N 3

\o? A

x:%ﬂ,)’:—‘l. C

An integrating factor is eIcotx d . t‘ln sinx sinx  and \“
xO

ysinzg = 5 Fginy ar = -52053 0.

\)
Whenx = 3N, y <-4: («d)(1) = -5(1)+ C and C =10 The particular solut ton 1n
A
AN\
y sinz + 55N
A\

N 2
. Solve x EfZ n (2_3x2)y = or ‘:f_y . 2-3x _
dx Fa L P
O
2 % )
2-3z i ¢\
I —r—dx = - = .3Ing \é‘nd an integrating factor is __!_..._ .
x3 x2 P 5
PRI
A/
Then z - 3 5 Ll
xiel/xz i{{x.ael/xz 5 J/xﬁ + CI. or 2}’ = x + [(x'e .
N\ e

..\

T,
™S

dy \‘»
6. Solve E{\?;:;cot 22 = 1 - % cot 2x ~ 2 esc 2z,
7

An integrating factor is e-_|'2 oot 2z dx = g 1n 5in 2« cse 2
= X .

h —
Then ¥ cse 2x = f(csc_?.x- oot 20 csc 2t - 2 osc? 2xydy - FCSC > + cot 2 + [
or
y = * + cos 2x + C sin 2x,

F
i~ Selve yIny dx + (x - Inyydy = g,

— 4
dy ylny

7 . .
he equation, with x taken as dependent variable, may be put in the form & L

Then ¢/W/O1ny) _ n(my,
e = lony isgan integrating factor,

Thus, xlny = fln ﬂ = 12
yy = Eln y+ K 8nd the seolution ig 2:1ny=1ﬂ2y+c-

.

bl |



LINEAR EQUATIONS

BERNOULLI'S EQUATION.

d
8. Solve Ey -y = xyﬁ or y“a_jx-z_y““ - x,
. -l 5 d
The transformation ¥ v, ¥ ? H_i = - i Z: reduces the equation to
1 dv dv
T3 v=x or I + 4y = —4x, An integrating factor is equ = e,
Then ve;m = —4_fxel+x = —xew + &e“x + C,
4 4 -
yqex=—xew+ﬁeqx+c. or i=-.:\c+£[+(7e:w.
y
9, solve j—z + oy +xy =0 or ¥ f-i—i+ %2y ) = -z '\\\
o
The transformation _)r"5 = v, —3y-q dy _ v reduces the eqyaticn to 92 - fxv = 3x,
dx  dx \ dx
o)
Using the integrating factor SIEd 3 e haves\
2 2 \ 2
ve " = f3xe'5xdx=—i'5x+c.,;\\df «-13—-1+Ceix.
\..\\ ¥
P
o 1 i 4 R . 1
10. solve 2 +Zy = Z(1-2 or W\ Z(1-2x).
ve 33’ 3( )y RN 3)' 3( )
The transformation '3 = v, -3 _\“ d_y =% reduces the equation to — - v = 2v - 1

for which e
ve © = J(x- l}é\/’dx = e e 4 C
'\"
C s
-2 d
11. solve j—i +y ”=‘.,\y (cos x - sin x) or  y o=
O\”\.“’
) _ —2dy _ dv
The trbrsformatmn y =v, =¥ &

for which e_x is an integrating factor. Then

-l

ve —-€

J(sinz - cos x)e-xdx =

192, solve xdy — {y+ xy5(1 +1lnx)tde = 0

'-5E§-—y.-=

o dv
Y L &

-2
The trapsformation y =%

for which EJ'Z dr/x =

43 23
- —x" - =X
3

..2_[(;2+ £% 1n x)dx = 5

2
v =

xz ig an integrating factor.

-3
y _y-—

or

-1
Y

- .
sinx + C

dx

Then

inx

+C

1

yﬁ

qQar

o5

reduces the equation to

A

1 -2
=Y

x

- or

x

¥

* is an mtegratlné\\factor. Then, integrating by parts,

-1 - 2% + Ce”.

x — sinx,

sihx —cos x

—_ -y =

. X
= —ginx + Ce .

= 1+ inx,

reduces the equation to i—: + %v = =2(1+1nx)

2 23 2

= =X ...

+ Inx) + C,

]
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MISCELLANEQUS SUBSTITUTIONS.

d .
13. An equation of the form i ;{% + fn P(x) = Qx) 18 8 lincar equation of the first order
(Note that the Bernoulli cquation

% + vP(x) = Q(z) in the new variable v = F{¥).

YL ey < Qe o Gaedy Sy ERHDPE) = (0 e DO exple)
P

b

- d
Solve _c_i_z+1 = 4e¢ “sinx or ey__y + ey = 4 s8inx,
dx dx

dv

In the new variable » = f{y) = ey, the equation becomes = + v =4 s8inx for which e ' ig

an integrating factor. Then . &\
AN\
ve" = 4_fex sinx dx = Zex(sinx - cosx)+C or y = 2(sinx -,tosx) vt
& s

s
R

SO
14. Scive siny % = cosx(2cosy - sinzx) ol -slny o o\\(z cos x} - Kin’a cos x.

\

In the new variable v = cos y, the equation becomes 0%&4 2vcosx = sinzx cos e for

. 2fcos x dx i O
which e2/COSFAX _ 2SIMX oo itegrating tar?m-.' Then
2slnx 2sin i
ve = Je S 02 ey de “‘é’e‘zsxnx _ ye zslnx ing + ﬁe?"“' L
or cosy = % si:{\x Jz sinz + § + Cc'“mx
¢ \\
15, solve siny%—‘i = cosy (1 - z doSy) or Slaydy = ! | ~
e \.' COEzy dx cos y
Since E—(-—Ds—y) = %“—yg‘. we take v = 1 and obtain the equation dv
3 —_— -t T —x.
LY {'Q ¥ coS ¥ dx
Using the 1nt£3\rﬁt1ng factor ¢™*, we obtain
- N - -
j—xedx=xex+ex+C ar v o= 1 :secy=x+1+(:gy—,
co8 y

&
16. solve Ij‘é-aw 3y -z = 0

or  xdy - ydr+ Jydy - x'dr = 0.

Here (x dy - ydr) suggest the transformation 2 = p,
x

xdy-ydx

Then 2772 | 42% - = i d
I x xdx de = 0 is reduced to ﬁ + 3x2v = 1 forwhich clj is an
integrating factor,
3
Thus wve® - _fx5 5 ’
¢ dx + C or  y = xe " [e¥ x4 Cxe-r,

The indefini
nite integral here canmot be evaluated in terms of elementary functions
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vy 2
17, solve (4r’s — 6)dr + rds = 0 or {(rds+ sdr) + 3sdr = -%dr.
r

The first term suggests the substitution rs =t which reduces the equation to

t
dt+3-dr=£dr or §E+§t= L
r r2 dr r 2
Then 1r~5 is an integrating factor and the solution is
3 = rts = 3+ C or s=3+_C__
2 N0

x3in8dd + cosB dx + 2cos6 dx = x di.

2
x

18. Solve xsin® 46+ (0= 2%cos O + cosByde = 0 or -

i "\
The substitution xy = cos 6, dy = - x8in B d + cos®dx reduces thé equation to

x2 ,.‘.x
i dy N -
dy + 2xydx = xdx or = + 2y = X W
2 o
An integrating factor is ¢ and the solution is AV
O
2 2 2 z 2
% cos B x x 1 ox \ _ -%
ye' = ———e = fe* xdx = 3¢ + K "‘;‘Qb 2cos O = x + Cxe .
n\\
\§v’

SUPPLEM{SN\TARY PROBLEMS
K

¢ &\
19. From the following equations, sé{\ect those which are linear, state the dependent variable,

and solve. O

N . \
a) dy/de +y =2+ 22:::\’»3 k) y(l+y Ydzr = 2(1= 2a¥ ydy
by dp/df + 3p = 2\‘"\‘ Iy yy' -xy —%=0
¢) dy/dx -y = w‘ By zdy-yds = xV/x'-y' dy
dy xdy- @ (x—2)e dx py ¢u(t) dajdt + xPp(t) =
ey difdt - §i = 10 sin 2t 0y 2dxjdy ~ xfy + 2 cosy =0
kD) dy/dx+y=ye P xy':y(l—xtanx)+xzcosx
g) ydx+ (xy+x-3y)dy =0 g @ryds - (xy + 2y +y )y =
hy (2s-e“)ds = 2(se2t—cos 2t)dt r) (1+y2)dx = (arc tan y - x)dy
i) xdy+ydx-xydx 5) {2xy5—y)dx+2xdy=0
j) dr + (2r cot g 1+ sin 26)d6 = 0 t) (1+sin y)dx = [2y cos y — x(secy + tan ¥) ldy
Ans,

s . . . &t

@ ¥ I.F., €% y=2+Ce ey i LF., e i= - 4¢3 sin 2t + cos 2t) + Ce
by o LF.. e%: 3p=2*% ce”® o x LE., ye¥s xy=3(y-1) G

.2 . 2 .
dy y; LF., 1/x2; y:ex+cx2 jy v LF., sin @: arsin O+sin 8 = C
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20.

21.

22,

EQUATIONS OF FIRST ORDER AND FIRST DEGREE

2
B x LR, (+y% ey Yx=2layry +C

n) x; LF,

1 2
; —_— =x cosx + Cx coBzx
Py oy LP, el Y
q) X I.F.,l/v‘2+y§; x=2+3’2+c/2+y§
~arc tan
ry x, LF.. LTOURRY. o - arctany - 1 + Ce bJ

: 2
ty x; IL.P., secy+tany, x(secy +tany) =Y +C

From the remzining equations in Problem 19, solve those of the Bernoulli type,

2 2 x? ®
Ans. ¢) y-l =w; lfy=1-xz+ Ce™* Iy yo=v; y =1+ Ce A
-1 x -2, o )\
fy ¥ =wu (C+xyye +1=10 0) 27 = wi x'y= CORYS Y n
- . 2 )
1) 3’5=?—'; 2,/,75=Cx5+5x!' ) y“=v; i -.(}x’r()y

Solve the remaining equations, k) and m), of Problem 18,

Ans. h) s? - se"‘)t +8in 2t =C

Solve: ™
a) ay' = 2y + xiex

subject to y = 0 y{feﬁ“x = 1,
di

A\
b) L - +Ri = E sin 2t, where {‘-B\E)re constants, subject to the condition : 0 when - 0.

N
m) Y :\\f{‘,&?tn(y v C)

Ans. y = xz(ei-e)

Apsy i = £ (R sin 2t - 2L cos 2t + zf_e""“}

\\¢} H2+ 4L2
Solve: O
2 dy § , . .
2}y x cosy . =‘~.2:5 siny -1, using siny = gz,
N>
2 o\ 7 2
by d4x"yy' i\gx(&y +2) + 2(33!2 + 2}.5 . using 3y2 +2 =z,
2
€) (xys—yi—x ex)a'x + 3xy2dy = 0, using y’ = ux.

d) dyfdi + x(x+y) = X(x+yy - i

&) r+e'~eydx + (14 eNdy = 0.

Ans.
Ans,
Ans,
Ans.,

Ans,

3x siny -

9 . R ?
4z - {({ -3x Ay -

2y5cl' -

Al
xe

efq&g(t)dt/qﬁ,_{t}' yef¢2(t)dt/¢z(t! . fq&l Jm:mw.m dt o+ 0
’ 1 (t)

t','x" .

1

&l
1

F



CHAPTER 7

Geometric Applications

IN CHAPTER 1 it was shown how the differential equation

1) ) f(xrj’:yr) = 0
of a family of curves
2) g(x,¥€) = 0

could be obtained. The differential equation expresses analytically acertain

~

property common to every curve of the family. ' &

Conversely, if a property whose analytic representation m}olves the de-
rivative is given, the solution of the resulting dlfferential equation rep-
resents a one parameter family of curves, all possessmg “the given property
Fach curve of the family is called an integral curve, “{) and particular in-
tegral curves may be singled out by giving addluorgl\propertles for example,
a point through which the curve passes.

 For convenience, the following propertles Qf curves which involve the de-
rivative, are listed. ¢* ;,
O
RECTANGULAR COORDINATES. Let (x,y) be a gegg:i:‘al point of a curve F(x,¥) = 0.

L
™
~ 3

‘g’ o:’:.‘ ’
I N\
y 3 o y
/|8 O
& 8 7
& A
< . ~.§\
N X ¥ x
0 \“; i 0

a}) % i the Slope of the tangent to the curve at (x,y).

by - dx is the slope of the normal to the curve at {x,¥).
)

Y
¢y Y-y = él()(,x) jg the eguation of the tangent 2t (x,y), wiere (X,Yy are the coordinates
dx

of any polnt on it.
d Yoy = - E(X—x) is. the equation of the normal at (x,y), where (X,Y) are the coordinates
d:

of any point on it.

e) x—y? and y—x% are the z- and y-intercepts of the tangent.
Y

41



GEOMETRIC APPLICATIONS

£ ox+ y% and y+x§fy are the z- and y- intercepts of the normal,

f dey2 / 92 the tangent between (x,y) and the x-
gy 1+(a-;_) and = 1+(£) are the lengths of the ¥ e x

and y-axes.
dy,? dx 2 1 bet and
By fl+ (=) and =x 1+ (E—) are the lengths of the normal between {(x,y) and the g-
dx id
and y-axes.

i) yE and yéZ are the lengths of the subiangent and aubnormal,

j) ds \/(dx) + (dy) drx /1+( = dy ll+(—) is an element of {ength al oure,

N
k) ydx or xdy is an element of ares. e

o 3

. >

No

POLAR COORDINATES. Let (p,8) be a general point on & curv,e\'\’;&; £(6).

N Py

X
v, T
A
2
D tany = o 9\\ ¥here ¢ is the angle between the radtus vector and the port of the tan-

gent, drawn. Toward the initial line,
n) P ta}r@ o e is the length of the polar subtangent,

dO
ny peoty = L s the length of the polar subnormal,

0) P sin = 2 pusiil
. Y= p is the length of the perpendicular from the pole to the tangent.

s

p) ds = Vo pP@d? - oz 2
. ey + £ = dof1+ ’O ( df (—) + P is an element of length
of are,.

L2
q) Ep._c__fé? is an element of ares.
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TRAJECTORIES, Any curve which cuts every member of a given family of curves at the
constant angle w is called an w-trajectory of the family. A 90° trajectory of
the fam}ly 1s commonly called an orthogonal trajectory of the family. For ex-
ample, in Figure (a) below, the circles through the originwith centers on the

y-axis are orthogonal trajectories of the family of circles through the origin
with centers on the x-axis.

y

(a}

In finding such trajectories, we shall USEND

A) The integral curves of the differential;teqﬁation
{

r \ o
3) f(x,¥y, Y_’.;'_a{li) = 0
1fyitan w

are the w-trajectories of the;{aﬁlily of integral curves of
1) OMyyh = 0
A\

To prove this, consider the integral curve C of 1) and an w-trajectory which
intersect at P(x,¥)..48 shown in Figure (b) above. At each point of C for
which 1) defines a\\?alue of y', we associate a triad of nmunbers (x,y;y’), the
first two being thé/coordinates of the point and the third being the corres-
ponding value W' given by 1). gimilarly, with each point of T for which
there is a tahgent line, we associate a triad (x,v;y’), the first two being
the coorginﬁ,t’es of the point and the third the slope of the tangent. To avoid
confusiag,} $ince we are bo consider the triads associated with P as a point
on C and %s a point on T, let us write the latter (associated with P on T) as
(%,7.7'). Now, from the figure, x=%, y=y at P while y’=tan & and y'= tan ¢
are related by

=t
y’ = tan 6 = tan(¢-w) = tan¢ - tanw _ y' -tanw

1+ tan ¢ tanw 1+¥/tane

Thus, at P (a general point in the plane) on an w~trajectory. the relation

-
fuyyy = FE7, L=2B2 ) = g
1+ y'tanw
‘_ tan
holds, or, dropping the dashes, f(x,y, y-trang 0
1+ y'tanw

B) The integral curves of the differential equation
4) fix,y,-l/y") = 0
are the orthogomal trajectories of the family of integral curves of 1).
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44
¢) In polar coordinates, the integral curves of the differentiul cquatign
2 d@
f(p,8, -p" =) = 0
5) {p, 8, -» @
are the orthogonal trajectories of the integral curves uf
d,
6) f0.8, Z) = 0.
SOLVED PROBLEMS
1. At each point (x,y) of & curve the intercept of the tangent on the y-axis in L] tao 2,3,’_
Find the carve. : {\
N\
Using e), the differential equation of the curve (s y ,,fz“;‘
dy 2 ydx _ xdy \ i:} {‘-.\"‘//__/
y-x=2 =2y or YZEZED ., g, N
o 2 A\
Y Ko e a2
W\ | - Y ooy
Integrating, . xz + 0 or x - xzy = Cy N \ /
7 . N . .
The differenti N oyt N
e differentisl equation may also be obtained dj<) 2y ¥
zo\ ——— e - —
rectly from the adjolning figure as %Y = ¥ 2 23¢ )
dx ) 0
N
2 M.: each point (’f’y)_ of & curve the suhtpgfié’ﬁ{ is proportional to the nmguare of The wbecinst.
Find the curve if it also passes thraugli ‘the point (1,e).
'\
e ‘ x\ "
s oy
ing i), the differentinl ¢duation is g M or d_: L ere & o1s the
A x y

proportionality factor,
N4

Integrating, &1n ,=\“...1.
ATt C Menxclyee keolv g oand G oke
The requireg.’e@we hes equation kiny < -1, ,, i
AN x *
'\

3. Find the}sﬁnily of curves for which the leng

contact (x,y} and the ¥y-axis is equal tg theth nteneg Tt of e T e o of

y-intercept of the tangent,

From g) and e), we have xJ Y2 dy -
» 1 + (--) = - — ? d‘
) Y-x or Ay x° - yz - 2!)’4': r

The transformation Y = vx reduces 4) g

2
(1+v}dx+2vxdv=0 or ﬁ + M

n
[~

1+ v
Integrating, 1p 4 + In(i+ :;2) = Ing¢

2
Then xq1+ 2, - 2
x2) C or i, J'2 = (x is the Equation of the family
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4, :hrc;ﬁgh any point (x,y) of a curve which passes through the origin, lines are drawn parallel
o the coordinate a:;;es. Find the curve given that it divides the rectangle formed by the twe
lines and the axes inte two areas, one of which is threes times the other.

¥ ¥ P(x,y)
B
B Pix.y)
X x
0 A 0 A
(@) OIS
There are two cases illustirated in the figures, mj'."u‘

@) Here 3{area OAP) = area OFB. Then 3_ijdx = xy - fuxyd({"t“or 4_|;xydx 5 XY«

W

To obtein the differential equation, we differentiate with :nespect o x.

dy gg >, 3y
Thus, 4y = + ox = /S T,
Y ¥ x 7 or < ~

An integration yields the family of curves ¥ :i'(\fraz.
by Here area OAP = 3(area OPB)  and 4‘[;’;;?{& = 3xy.

dy - ™
The differential equation is d—i = E-y-. and the family of curves has equation y3 = Cx.
3%
\ N
Since the differential eqﬂation,(ﬁ}ach case was obtazined by a differentiation, extraneous
solutions may have been 1ntr0ducéd.\it is necessary therefore to compute theareas as a check.
In each of the above cases, the'gurves found satisfy the conditions, However, see Problem 5.
P N\Y;
A. The areas bounded by t!re;x-a.xis, a fixed ordinate x =e, a variable ordinate, and the pé.rt of a
curve intercepted by~th¥ ordinates is revolved about the x-axis, Find the curve if the volume

generated is propoﬁt}ional to a) the sum of the two ordinates, b) the difference of the two
ordinates, m;"\:"

\¥
4
a} Let A be ﬁe length of the fixed ordinate. The differential equation obtained by differen-
. X g . 2 dy
tiating 1) rcfa yidx = k(y + 4y is Ry = k&;. Integrating, we have 2} ¥(C - nx) = k.

When the value of y given by 2) is used in computing the left member of 1), we find

2 2 2

x k" dx -k k
———— = -— = k - A .
3 nfﬂ (€ - nx)? C-Tnx C-na v )

Thus, the solution ig extraneous and ne curve exists having the property a).

1
b} Repeating the above procedure with 1 nfa y2 dr = k(y — Ay, we obtain the differen-

tial equation mny> = g-x! whose solution is 2") y(C-7nx) = k.

It is seen from 3) that this equation satisfies 1!y, Thus, the family of curves 2') has the

required property,
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such that at any point on it the angle between the radius veetor and the gap,

., Pind the curve
6. F1n o one-third the angle of ipclination of the tangent.

gent is equal ©

Let & denote the angle of inclination of the radius vector, 7 the angle of 1nciinatigy of
the tangent, and ¢ the angle between the radius vector and the tangent,

Since ¢, = T/3 = {lIJ-i' 9)/3’ then \b = w and tlﬂ"’ * tan i.".

" cot Y dt,

olf

Using 1), tany = pj—g = tan 39- =0 that

X » . Y
Integrating, Inp = 2Mmsin3f+1aCy  or P = Cyain 30 il roxo,

%. The area of the sector formed by ap arc of s curve and the radii vectors Lo The cud points {s
one-half the length of the are, Flud the curve. . \«
AN
Let the radii vectors be given by &= &, and & = 6, ¢\

3 ) A\
Using ¢) and p), [ ohde = “.8 o, e
8 1 ¥'dg ¢

Differentiating with respect to 6, we obtain the dlrte::entlll oquat fon
w\J
y \ n/

o - ‘/(j—';f*e R T e
{

Y =

2
If o7~ 1, 1) reduces to dp = 0. 1t ,];8'0&;11, verified that & = | watinfievs the condition
of the problem, &N

*y

2 .
I .
£ P #1, we write the equat}%\in the form . £d6  and btatn U solution

e PYp -1
sec(C + 0). Thus, the cohitions are satisf

p =
_ ¢ led by the circle o = 1 and the Tumily af curves
£ = sec(C + &), Note t}\lap..the families 0 = sec(C + &) and p « 80c(C - ¥y nre the snwe,
8. Find th o
« Fin e Curv r
of the perpeneig}ghizgmtl:: :::tim; 011;’ the tangent between the point of contact and the fool
point of copté.p ) pole to the tangent is ome-third the radius vector to the
Re N
\ / M P
a
o M
]

(4

(b

In Figure (a): p = g4

= 30 cos(n - = —_
In Pigure (by: P=3 =3 cos alf:()i t;::lplpcia lg:@ cos ¥ = ~1/3, and tan -~ 22,

Using !) and combini
Blog the two cases, ta.m}::pé?:izﬁ or dic \ des
The requj ® P 2v2
quired curves are the families p =Cee/2ﬁ and ¢ ~8/2/F
£ =LCe .
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0. Find the orthogonal trajectories of the hyperbolas xy = C.

The differential eguation of the given family is xg% + ¥ =0, obtained by differenti-

Z;ing xyd: C. The diff::ential equation of the orthogonal trajectories, obtained by replacing
= by - —> i - — = -
o ¥ & is xdy+y 0 or ydy - xzde=0.

Integrating, the orthogonal trajectories are the family of curves (hyperbolas) yz— £*=C.

Problem 9 N Problem 10
| 2 g
1{). Show that the family of confocal conics = +(~;y—)-\ = 1, where C is an arbitrary constant,
is self-orthoganal. ’
Differentlating the equation of th{{amily with respect to x yields % + Cyph = 0, where
<O
) - A
p = ‘_{Z Solving this for €, we\find C = Ax so that C-A = LY . When these replace-
dr xtyp xtyp
ments are made in the equadien of the family, the differential equation of the family is found
to b I
e \& (x+yp)(px~¥) — ?\p = 0.

Since this equaj;i%wis unchanged when p is replaced hy -1/p, it is also the differential
equation of the "\cirjtbogonal trajectories of the given family,

o\
O "
11. Determine the orthogomal trajectories of the family of cardiods @ = C(1 + sin 8).
L . Loode . P . 1 dp
Differentiating with respect to & to obtain — = C cos &, solving for C = —— —
d8 cos & df

and substituting for € in the given equation, the differential equation of the given family

is dp pcosf

d_é 1+ siné

The differential equation of the - orthogonal trajectories, obtained by replacing ;io by

_p2£§ is de
do 40 _M—— or @ (sec 6 + tan §)df = 0.

_d,O B oL+ sin &) 2

€ cos &

= C({l-sin &),
gec & + tan @

Then inp+ In(sec @ + tan &) — 1n cos@ = InGC or g2 =
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? ?

eptric circles 1%+ y i,
12. petermine the 45° trajectories of the family of conc

' -
The differential equation of the family of circles 1s =x+ ¥y 0.

‘plecing ¥ in the
The differential equation of the 45° trajectories, obtained by replacing ¥' in the above

r
1_ tands’ y=1 y=-1_ or (x o yidy (v ovadp =g
equation by - . - = =, 18 S brww 0
1+ y'tan 45 l+y ¥y
Using the transformation y =vx, this squation s reduced to
dx vl
(u2+l)dx +x{v+lydy = 0 or " ' . 1dv -0
2 ? " )
Infegrating, Inx + iln(u2+ 1) + arctanv = In K,, Inx%¢l+ %)y - Inh Y oure tany,
-2 retan y/x "
and  x%+ y2 = Ke I, , R\
2 28 A, -
In polar coordinates, the equation becomes 0 = Ke or e ¢ 6
o e
AR
SUPPLEMENTARY PROBIFWS
O
13. Find the equation of the curve for which K7))
@) the normal at any point (x,y) passes througﬁ‘tﬁe origin, Ans, k2.7 o
by the slope of the tangent =t any point .(";y}mis 4 the slape of the line from (e LE1gin to
the point. A\ Ans, y? - in
©) the normal at sny point (r,y) and.Ehe Iine joining the origin to that potnt fure an 1s08-
celes triangle having the x-a.x,@ as bage, Ang. y1oa? o

d) the part of the normal dra{(;}

point {(x.y) between this point and the s-uxis 15 hisected
by the y-axis,

‘ Ana, yz SIS
€} the perpe:}dicular fremvshe origin to a tangent line of the curve [s vcgunl Lo thie absclsse
of the point of comtict {x,y) Any. 2.2 in

O\
fy the are 1engt§}«§rom the crigin to the variable point {x

“/ ¥) I8 equal to twice the square
root of th{h cissa of the point,

A\ Ans. y = t(arcsint o, T aZ73+C
g} the Polarisubnornel is twice the sine of the vectorial

N angle. Ans, p - {0~ 2 eon
k) ths\aﬁgle between the radiyg vector and the tengent 1

s & the vectorial angl-.
. Ans. p - (1 - cos )
%) the polar subtangent is equa] to the polar subnorma] Ans, p - (: ¢

R . . T L

4. Find the orthogonal trajectories of each of the following families of curves
@) x+2y = ( dns, y o2y = - }
! B) P 3’2 2 k f)y=x—1+Ce'x Ar:s.,t-y—l‘*("fJ|I
Xy = X -~y =K ) 2 . 2"2 2 2 vy =0
) 12+2y2=c y - 2 gy = (1-Cx)y "+ 3y In(Ky) =
dy y = o2 2 . hy p = a cos g p - b sint
1 = X4 . X ’
8}y2=x5/(c—x) 2 24 . Y) 0 = a(l+sin 8, p - b(l-sind)

Ne-= a(sec & + tan §) o - be-smé



CHAPTER 8

Physical Applications

MANY OF' THE APPLICATIONS of this and later chapters willbe concerned with the mo-
tion of a body along a straight line. If the body moves with varying velocity
v (that is, with accelerated motion) its acceleration, given by dv/dt, is due
to one or more forces acting in the direction of motion or in the opposite
cfiirection. The net force on the mss is the (algebraic) sum of the several
orces.

EXAMPLE 1. A boat is moving subject to a force of 20 pounds on its sail
and a resisting force (lb) equal to 1/50 its velocity (ft/sech\If the direc-
tion of motion is taken as positive, the net force (1lb) is 20+ v/50.

EXAMPLE 2. To the free end of a spring of negligible qiﬁ;.ss", hanging verti-
cally, a mass is attached and brought to rest. There are, two forces acting on
the mass - gravity acting downward and a restorir}g\force, called the spring
force, opposing gravity. The two forces, being opposite in direction, are equal
in magnitude since the mass is at rest. Thus, thevnet force is zero.

O

Newton's Second Law of Motion states in pa}t that the product of the mass
and acceleration is proportional to the net(force on the mass. ¥hen the sys-
tem of units described below is used, the factor of proportionality is k=1
and we have

»."':’
mass x acceleration = net force.

THE U. S. ENGINEERING SYSTEM is based on the fundamental units: the pound of force
(the pound weight), the fo t.of length, and the second of time. The derived

unit of mass is the slug, défined by

weight in pounds .

"N/ R
(mass in slugs =

R g in ft/sec?
Hence, \'\\ 2 - .
mass.in slugs x acceleration in ft/sec® = net force in pounds.

The a\&céieration g of a freely falling body varies but slightly over the
earth’s surface. For convenience in computing, an approximate value g = 32
ft/sec? is used in the problems.

SOLVED PROBLEMS

1. If the population of a countTy donbles in 50 years, in how meny years will it treble under the
assumption that the rate of increase is proportienal to the number of inhabitants?

Let y denote the population at time t years and yo the population at time t=0, Then

1) QZ = ky or d_y = kdt, where k is the proportionality factor.
di ¥

c - C kt

First Solution. Integrating 1), we have 2) lny = ki +1n or y=le .

kt
At time t =0, y =yo end, from 2), C = Yo. Thus, 3) ¥ = Jo€

49



50 ' ' PHYSICAL APPLICATIONS

30k 0,
At t=50, y=2y5. From3), 2yo = Yot or e

ki

50 j0kt goh): :
When y = 3yo, 3) gives 3=¢ , Then 3 e

(e « 2 and 79 years,

Second Solution., Integrating 1) between the limits ¢ =0, y=yo &nd ¢ 50, y 2y,

50
J-”b @, j‘ dt, InZyp - lnyy » 50 wnd S0k In o,
b Y (i

Integrating 1) hetween the limits t=0, y=yo and t=t, y =3y,.

% t
f%fl - kf de, and ln3 -kt
¥ Y (]

[+]

50 In 3
Then 50 1n3 = 50kt = ¢t ln2 and ¢t = = 79 years,

~

n 2 "\
O
2. In a certain culture of bacteria the rate of increase is proport}gann”i to Lthe nushber present,
{a) If it is found that the number doubles in ¢ hours, how my\‘-y be vapeeted ot (e epd
of 12 hours? (b) If there are 10" at the end of 3 hours and&liio‘ at the vnd of » haurs, how
many were there in the beginning) \/

v

\/
Let x denote the number of bacteria at time ¢ hour.> “Then
N .

N\
1) = = kx or x'é=idl.
dt x

o/

) First Solution., Integrating 1), we ha.yé:l D Inx=ht+1nC or x (e

e
At

Assuming that x = xg 8t time ¢

0, " €=xo md x = zoe

At time t =4, 2 = 2o, Then .Zhg'= zoe™ and o - o,
_ Lk o{

When t = 12, g = Ige = x::\ée )5 = xo(2§) = Bxg, that 18, there are B timen the ariginal

aumber, '

Second Solution, Infegrdting 1y between the linlts t=0, x=x, and ¢-4, + 20,

2"0'.&,\ "
f W= = k| ode, In 2% - .
R\ % o Zo - Inx; = gk

and 4k - In 2,
Integrgi:if.l"g' 1) between the limits & =Q,

\ X =xy and t=12, x=x,
4 x
Lofle
- | dt, and 1‘1?0 *= 12k = 3¢4k) = 3 1n2 - In g

Then =« = 8x,, ag before,

) First Solutien, When t = 3, & - 10, Hence, from 2), 10" = Celk® and - 10,
) e
When t = §, x = g.1¢%, Hence, 4.1p" = Ce* and C = ‘1_'10‘
TH
. 1 4 ¢
Equating the values of c, = - :4_-_1_{)_ 2k k
| 3% rreuly Then e =4 and ¢ = 9
€ e
Thus, the original nusher is ¢ = 10* 10’

o5k T == bacteria,
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Second Solution, Integrating 1) between the limits t=3, x= 100 and t=5, x= 4'104-

u-lt}“ [
[T
) P ) t, In 4 = 2k and &k = 1n 2,
Integrating 1) between the limits ¢=0, x=x, and ¢=3, x= 10“.
4
3
r“’ dx " )
= = k_[dt, 111-1-0--=3k=31n2=1n8 andxo:lo_asbefore.
xO x Xo B8

3. According to Newton’s law of cooling, the rate at which a substance cools in moving air is
proportional to the difference between the temperature of the substance and that of the air.
If the temperature of the air is 306° and the stbstance cools from 100° to 70° in 15 minutes,
find when the temperature will he 40°, 8\

AN
Let T be the temperature of the substance at time t minutes, m:: )
d % :sv}
Then T’ -k(T - 30} or dr = —kdba
dt T - 30 O ?
(Note. The use of -k here is optional, It will be found ;h@t’k is positive, but 1f +k is
used it will be found that k is equally nesative,) v
Integrating between the limits ¢ = 0, T = 100 and A*15, T = 70,
® o ur 1 WO 4
f = ~k dt, 1n 40 ~ )70 = ~15k = In = and 15k = 1n = = 0.56.
oo 1 - 30 ' A\ 1
Integrating between the limits ¢ = 0, T'=~ 100 and t = ¢, T = 40,
% t o
f ar . f 0o 1m0 - In0- -kt, t5kt=15m7, t- Dl = 52 min,
oo T - 30 0 ¢ '\'\.“ 0.56

N

4. A certain chemical dissolVes”in water at a rate proportional te the product of the amount un-
dissolved and the difﬁeﬁﬁce between the concentration in a saturated solution and the con-
centration in the alsgua.l solution, In 100 grams of a saturated solution it is known that 50
grams of the substance are dissolved, If when 30 grase of the chemical are agitated with i00
grams of wate;,\‘flb" grams are dissolved in 9 hours, how much will be dissolved in § hours?

e _
Let x d%ofe the number of grams of the chemical undissolved after t hours, At this time

- .. o
the concentretion of the sctual solution is 30 and that of a saturated solution is TEE

Then

dr | g0 _30-% px B2 or de __dx k.
dt 100 100 100 x x+ 20 b

.3
1
[}
(=2
|
)
=
L}
=

Integrating between t = 0, = = 30 and ¢t = 2,

20 20 2
f é _ f _ix__ = k f dt, and kE = 3 1n 5 . —0.46.
30 X 50 + 20 5 2 6

x

Integrating between t = 0, x = 30 and t =53, x =X,
x x 5
f dx _ f de .klf dt, In—"% = k= ~0.46, x_ 30
30 % 50 % +20 5 i 3(x+ 20} x+20 5

= 0,38, and x = 12, Thus, the amount dissolved after 5 hours is 30-12 = 18 grams.
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H. A 100 gallon tank is filled with brine containing 60 pounds of dissolved salt, Water rung {ptg
the tank at the rate of 2 gallons per minute and the mixture, kept uniform by stirring, rung
out at the same rate, How much salt is in the tank after 1 hour?

Let s be the number of pounds of salt ip the tank after t minutes, the concentration thep
being s/100 1b/gal, During the interval dt, 2dt gallons of water [lows intu the tank and

2dt gallons of brine containing -1%% dt = % dt pounds of salt flows out.

L3
Thus, the change ds in the amount of salt in the tank is ds = - % 1.

- ~ /D
Integrating, s = Ce t/;o. At t =0, 5 = 60, bence, C = 80 and s - 80¢ oY
When ¢t = 60 minutes, s = Ei(.'hz"w5 = §0(.301) = 18 pounds, “
AN\
6. The air in a certain room 150'x50'x12' tested 0.2%C0,. Fresh air eoutining 0,057 €O, was

then admitted by ventilators st the rate 9000 ft*/min. Find the pg{geﬁfaxv CO, after X minutes,

Let x denote the number of cubic feet of CO, in the room g’(ltlm t, the concentration of
€0, then being x/90,000. During the interval dt, the amount of CO, entering the room is

9,000(.0005)dt ft> and the amount leaving is 9,000 mit- dt ft’,
905000
.5“5 4
Hence, the change dx in the interval is  dx( %"9,000(.0005 - yde - - T,
S\ 90,000 10
\ -t/10

Integrating, 10 In(x — 45)

-t + In C,’ and =z = 45 + Ce
AL t =0, x = .002(90,000) Y

180... Then C = 18045 = 135 and x = 45 + 135e

N
_ -z
When £ = 20, x = 45+ 135e.' o\=\,83. The percentage CO, is then 63 . 0007 0.07%.

90,000

.

A

7. Under certain conditions “the constant quantity
Q calories/second of heéatr flowing through a wall
is given by \ )

l~—125 cm—-l

. ‘\=s..' _kA i‘_T:
R Q‘ dx >
N 8| | >

wher:; k is~the conductivity of the material, ot 1 s
Agcm ) isthe/area of a face of the wall perpen- g ! \‘l
dicular to the direction of flow, and T is the - l‘ !
temperature x(cm) fromthat face such that T de- : 02 I x
cr(_aa.ses 85 x increases. Find the number of cal- \ ! 1 S‘f’
ories of heat per hour flowing through % Sguare \\‘ . { o
meter of th 11 RN l “

e wall of a refrigerator room 125 cm N\ ] ! &
thick for which k = 0.0025, if the temperature A
of the laner face is -5°C and that of the outer o
face is 75°C, '

direction of flow
let x denote the distance of a point

wit
the wall from the outer face, .

Integrating dT = - X -
™ TTRMZ =0, T=75 tox- 15, Te_s,

-5 0 125
d = -
7H T kA o dx, BO = _0_(125)' and Q - w i 30(.0025)(100)2 16 C_al'
kA 125 125 sec

Thus, the flow of heat per hour = 3600Q = 57 600 cal
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8. A steam pipe 20 cm in diameter is protected with &
covering 6 cm thick for which k = (0.0003. {a) Find
the heat loss per hour through & meter length of
the pipe if the surface of the pipe is 200°C and
that of the outer surface of the covering is 30°C.

(b) Find the temperature ata distance x >10 cm from
the center of the pipe.

At a distance x > 10 cm from the center of the
pipe, heat is flowing across a cylindrical shell of
surface area 2Mx em? per cm of length of pipe. From
Problem 7,

dT T dx
Q = kA — = -2nkx — or onk dT = -} — .
dx * & 3

a) Integrating between the limits T=230, x =16 N\
and T = 200, z = 10,

No

lnﬂk\éﬁ' and Q= —3-% cal/sec,

200
dx
2nkf dar = - f —> 340ntk = Q(1n 16 -1n 10) =
30 Q 1 X Oin nlo) = Q 1n 1.6

AN
Thus, the heat loss per hour through a meter length of pipe is 100(60)20 = 245,000 cal,
k dx D
b) Integrating 2mkdT = - %%. 4% petween the’Mmits T = 30, x = 16 end T = T, z = x,
n 1] x i. ¥

N/
%

r P N,
f ar = - 200 f &, T-30 8% - I0_ jp X apd T= (304 170 1nE)°c.
30 1Inl.6 vy * In 1.6 16 1n L.6 x

3

Check. When xz =10, T= 30 + i%}m L6 = 200°C. When x =16, T = 30 + 0 = 30°C.
e

N

9. Find the time required for '@fﬁ'}flindrical tapk of radius 8 ft and height 10 ft to empty through
a round hole of radius l\:in'ch in the bottom of the tank, given that water will issue from such
a hole with velocity mpproximately v = 4.8/h ft/sec, h being the depth of the water in the
tank, . .gw’
The volume £ j}a’cer which runs ouf per second may be thought of as that of a cylinder 1 inch
in radius amd\of height ». Hence, the volume which rums out in time dt sec is

1.2 mn
nely? a.gvRydt = —(4.8VR)dt.
(12) ( ) 142

Denoting by dh the corresponding drop in the water level in the tank, the volume of water
which runs out is also given by gandh, Hence,
_eauaay dh oo dh

T
I 4.8/ h)dt = -6andh or  dt =
Taa' ) 4.8 vh Vi

Integrating between £ = 0, h=10 and t=t, h=0,

t 0 0
f gt = _lgmf dh | and :=_3s40/FLB = 3840 V10 sec =3 hr 22min.
0 14 '/F

10. A ship weighlng 48,000 tons starts from rest under the force of & constant propeller thrust of
200,000 1lb. a) Find its velocity as a function of time t, given that the resistance in pounds
is 10,000v, with v = velocity measured in ft/sec, b) Find the terminal velocity (i.e., v when

2
t »x) in miles per hour. (Take g = 32 ft/sec.)
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2. _ b)
i celeration (ft/sec ) = net force (1
sinee mass (siugs) x 80 = {mpetus of propeller - resistance,
dv v 20
48,000(2000) dv  _ n X . 2.
then ———-—-—3; )E = 200,000 - 10,000v or ) T 00 e
t/300 20 [ t/300 N t/%0
Integrating, ve /300 = e dt = 20¢ + C,
300
-t/300 -t/ 500
a) Yhen t = 0, v = O; =_9 and v = 20 -~ e /3 = 20(1 - ¢ .
by As t-m, v = 20; the terminal velocity is 20 ft/sec = 13.6 al/hr, This muy also be gb-
du . -

tained from 1) since, as v approaches a limiting value, ?d_t « 0. Then v = 20, us belore,
A boat is being towed at the rate 12 miles per hour. At the instant (¢ =\Dy thet ttu towing
line is cast off, & man in the boat begins to row in the directien ofmoticn exertinge o lorce
of 20 1b, If the combined weight of the man and boai is 480 1b and“~the ‘reslstance (1) is

equal to 1.75v, where v is measured in ft/sec, find the speed o'f\t‘hé ‘boat after 5 minite.

79 \ I
net fO{ce {1b}
forward force - resistanc:,

BSince mass {slugs} x acceleration (ft/secz)

then . 4_;_8_{):1__1: = 20 - 1.75v or @+-?—u = :‘.
32 dt Mt 60 3
NS
£
Integrating, ve”ﬂm = é_fewm dt % 80, et C.
12(52 ST -
When t = Q, v = —(582}=-8- C=316- and u=@+—2§-e1m.
(60) 5 \\ 35 ki 35
"\,.’
When t = 30, v = §72+ Z—?‘e 5 11.6 ft/mec,

.,\

A mass is being D'-lllel;l\across the ice on a sled, the total weight including the sled being
80 1b. Under the hQSlimption that the resistance offered by the ice to the runners is negli-

gible and that &he' air offers a resistance in pounds equal to5 times the velocity (v ft/sec)
of the sled ‘fmd

@) the conﬁtant foree (pounds) exerted on the sled which will give it a terminal velocity of
10 miles‘per hour, and

b) the velocity and distance traveled at the end of 48 seconds,

Since mass (slugs) x acceleration (rt/secz) = net force (1lb)
= forward force - resistance,
80 dv d
then = - p_ i - 2
3% 0t F-35v or 5t v = EF’ where F (1b) is the forward force,

Integrating, v = g+

Ce ", When t=0, v=0; then € = - -2t

and A)u:‘g(l-e ).

|

F 10(5280
a} As t - =y = ) _ 44
} ®, 3 v -—;__)?__ = __3 - The required force is F 220 1b,

b) Substituting from a) in Ay, v = 24y _ o2ty
3 .

When t =48: -u=fl.3 - 48 48
3( e )-—-ft/sec, and s = | ygqt 2‘_1_[ (l—e““)dt=697ft-
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13. A spring of negligible weight hangs vertically, A mass of m slugs is attached to the other

end, I'f the mass is moving with velocity vy, ft/sec when the spring is unstretched, find the
velocity v &5 a function of the stretch x ft,

According to Hooke’s law, the spring foree (force opposing the stretchy is proportional to
the stretch,

Net force on body

H

weight of bedy - spring force,

dy dv dx dv dx
Then m—_— = - _ = = = - = =

o mg -~ kx or m & ny mg - kx, since = T
Integrating, nv’ = 2mgx - ke’ 4+ C.

2 2
¥hen x = 0, v = ¥o. Then C =my; and m? = 2mgx—kx2+ Mg .

14, A parachutist is falling with speed 176 ft/sec when his parachute opens. 1 .\the air resis-
tance is Wv?/256 1b, where ¥ is the total weight of the man and parachutey, find his speed as
a function of the time t after the parachute opened. (M)

N

Net force on system weight of system — air resistance, \~
.'\

2
Then E! -d-g = ¥ - EE... or ..__du F'x\"’ ﬁ .
g dt 956 22 — 958\ a8
A\
Integrating between the limits ¢t = 0, v = 176 a.ndx;t.\= t, v =,
v d 1t 1{'\?;:—16 v ]t
[ % - —-fdt, JQR =__l .
176 v2 - 256 8 Jo 32 w16 8l
s 5 G45¢ "
i N T R vl 3% ama = 16
v +16 6 & +16 6 6 -5e

Mote that the parachutist qui{:il\y'.attains an approximately constant speed, that is, the
terminal speed of 16 ft/sec. £\
A/
17. 4 body of mass m slugsﬁih“ls from rest in a medium for which the resistance (1lb) is propor-
tional to the squar\bf’ the velocity (ft/sec). If the terminal velocity is 150 ft/sec, find

a) the velocity ab, ‘the end of 3 seconds, and
b) the time regutred for the velocity to become 100 ft/sec.

Let v de}lfe the velocity of the body at time t seconds,
weight of body — resistance, and the equation of motion is

Net force om body

1y m% = mg - Kv?,
2z
Taking g = 32 ft/sec?, it is seen that some simplification ispossible by choosing K=2mk".
) dv
dv 22 _dv o ads.
ot - i -k v or
Then 1) reduces to T { kzuz Y
kv —4 =16kt
kv =4 = Ce .
Integrating, 1n v = -16kt + 1n C or o Td
hv—4 _e-lbkt
When t =0, v = 0, Then C==1 and 2) v =
- 150 a3t
-1bkt -2, s ¥ = —e .
When ¢t -, v = 150. Then € .= (18 k= T and 2) pbecome ST 150
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a) When t = v-150 —e-'ab = -.423 and v = 61 ft/sec,
v+ 150
- -‘l.b
b) When v = 100, ACLIS R and t = 3.7 sec.
A body of mass m falls from rest in & medium for which the resistance (1b) is proportional tg
the velocity (ft/sec). If the specific gravity of the medium is one-fourth thut ol the body
and if the terminal velocity is 24 ft/sec, find (a) the velocity at the end of 3 ser and (&)

the distance traveled in 3 sec.

Let v dencte the velocity of the body at time ¢ sec, In addition to the lwo forves acting
as in Problem 15, there is a third force which results from the difference in specitic pray-
ities., This force is egual in magnitude to the weight of the medium which the buidy displuces
and opposes gravity, -~

Net force on body = welght of bedy - buoyant force - resistance, , am the equat ion of
motion is mdv g 1 ‘o - .?:mg ke :M? o

dt rad 4 ' A\
2 d :\ ' it

Taking g = 32 ft/sec” and K = 3mk, the equation becomes ‘difk: 3(8-kv)y cor Pk 3t

ke

Integrating from £ =0, v =0 to t=1¢, v =y, \\

1 v t o) —tkr
—‘Eln(a—ku)G = 3t0 , ~1n(8x"2v) + In8 = 3kt, and kv - H(1-¢ v,

«

When t +w, » = 24, Then k = 1/3 a.nﬁffi) v = 2a(1-e""y.

L QY

Q) When £ =3, v = 24(l-e ) = 22,8 £t/sec,
A\

. dx
b} Integrating v = = = 24{1,-\@‘;) between t =0, x =0 and t = 3, x = 1,

x

% t

Ao B
= 28(F e )|

£ ’\s.

g, &/
°\N

\ and x = 24(2+ e ’) = 49.2 ft.

The gravitationahp%l on & mass w al & distance s feet from the center of the earth is pro-
Portional to m.and inversely proportional to s2, 2} Find the velocity attalned by the muss
in fal%ing..ffqm rest at a distance 5R from the center to the earth's surface, where R = 4000
miles is teken as the radius of the earth, b) What velocity would corresponzi to a fall from

:J;rcilniinite distance, that %s. with what velocity must the mass be propelled vertically up-
1ectmo)esscaLpe the gravitational pull? (All other forces, including friction, are to be neg-

The gravitational foree at a distance s from the emrth’

2 ,
note that the force is mg when s = R; thus ag = kn/R? 8 surface is km/s2, To determine k,

and k = gR?, The equation of motion is

dv ds dv d mgﬁz
1 R o—-— = —_—— = U =
CTETtaa e Ty o e e

g

the sign being negative since increases as g decreases

a) Integrating 1) from v = 0, s=5R tov=v, ¢ =R
[ = ¥

fvdu=_g3’R§£ 2 .21 1. 4
Ia:e 2 3" - gR G " v?s -2-(32)(4000)(5230).

and v = 2560v185 ft/sec or approximetely 6 mi/sec,
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b) Integrating 1) fromv =0, s—® to v=1v, s =R

u
- 2
J; v dv -k Im K v" = 2gR, v = 40033 ft/sec or approximetely 7 mi/sec.

One of the basic equations in electric
circuits is

di
1 L= + Ri =
) e i Ey,
where L(henries) is ealled the indue- Eq 1=

tance, R{ohms)} the resistance, i{am-
peres) the current, and E(volts) the
electromotive force or emf. (In this
bock, R and L will be constants.)

¢) Solve 1) when E(t)=E, and the ini-
tial current is i,.

by Solve 1y when L = 3 henries, R = 15 (@

ohms, E(t) is the 60 cycle sine wave of
amplitude 110 volts, and i=0 when £=0,

’\./’
3 By Rt . _E ~Rt/L
a) Integrating L {{E + Ri = E, ie“/L = E—ofe”/ﬂ Q‘t\: E?,e /L+ C or i==24+Ce f .
dt L {\.\\: R R
. E N ~Rt/D . =Rt
When t=0, i =ip., Then C=10--R2 a,n;d‘»‘z =%(1—e /) + ige .
Note that as t—w, i = Eg/B, a cons.ta’ni::f
at o |
b) Integrating 3 4}_1' + 151 = EO'\éiﬁ ot = 110 sin 2T(60)t = 110 sin 120mt,
t
> 110 + 5 gin 120mt — 1207 cos 120wt
it - lmf ot sifn’ TZOT!t dt = e + C
R 3 25 + 14400 T’
\” 22 wsin 120wt — 241 cos 1207Mi -5t
or ',\\1 = = 5 + e .
3 1+ 5761
."\. )
\ 22247
When ¢ =0,\/=0. Then C = ——
3(1 + 576M°)
5t
. 22 sin 120m¢ - 24m cos 1207t + 24N e
and i =
3 1+ 537602

that the sum of the squares of the cpefficients

A more useful form is obtained by not ing : .
of the sine and cosine terms is the denominator of the fraction above. Hence, we may define

1
2% b
. - and cos
sin @ e srenty? (1+ 576m%)
-5t
1767me
so that 1« g (cos & sin 10ne - B P e BIRE T T
3(1+ 57612Y "
176“8“

22 gin(a2omt - @)

3(1 + 5761%)

L]

1+ 57612

Note that after a short time the second term becomes very small; thus, the current quickly be-

comes & pure sine curve.
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19, If an electric circuit contains & resistance R{ohms) and & con-
denser of capacitance C(farads) in geries, and an eaf E(volts),
the charge g(coulombs) on the condenser is given by

ﬁ + - E.
dt* c E(t)

IR = 10 ohms, C = 107> farad and E(t) = 100 sin 1207¢ volts,
a} find g, assuming that ¢ = 0 when t = 0.
b) use i =dg/dt tofind i, assuming that i =5 amperes when t =0,

Integrating m:i:-‘t! +10°¢ = 100 sin 120Kt,  we have

¢

w0t 100 sin 120mM¢ — 120N cos 1207
g™ - 10 sintone dt = 106" -~
b 10,000 + 141@\0“
. oot 10 sin120mt — 127 cos l2ont
100 + 144n? R S
:'.\\-1]::3
and 1) g = _;_% sin{i2mt - ¢) *’\‘Ae ¥
(100 + 144n?)
w\/
y \ "
where sind = ___uf__;_ﬁ end cos ¢ =& 0 %
(100 + 1447%) OV(100 + 144n?y
3n 1 3 e
a) When t =0, q=0. Then A = ———lald @ = ~————— Ein(i20Mt - ) + ~— 2
25 + 361, 225+ 36n%)" 25+ 361
. x o '\
b) Differentiating 1) with rgs\pe}at to t, we obtain
(™
. -a(mn -
D =:‘3Tq - —go——yzcos(lmnt-é) - 10047 %%,
o (25+ 3613
When t=0, i<’5§"Then wodA = eon z cosdh -5 = 3o 5
Q (25 + 361%) 25+ 36n”
"{ > . Ll
and ..\; i = & % COs(120mt - ¢b) - { 300 - s)c-wot.
N\ (25 + 36n2) 25 + 3602
20. A boy, standing in corner 4 of & rectangnlar ¥
peol, has a boat in the adjacent corner B on B
the end of a string 20 feet long. He walks
along the side of the pool toward O keeping
the string taut, Locate the boy and boat when C"»)')
the latter is 12 feet fromAC. T
bt
1 .
Choose the coordinate system so that AC is = \‘
aleng the x~axis and AB is along the i ! : ¢
y-axis, vy
Let (x,y) be the position of the boat when x| va0-y* \/: \
the boy has reached E, and let O denote the A E ¢
angle of inclination of the string,
Then tanf - ¥ _ __-y V400 - y?
dx

or dc = - Y
V400 - y? y dy.




PHYSICAL APPLICATIONS a9

Integrating, x = _--_,/_400;13,5. + 20 In—z—'i—-— ‘M

.
y
When the boat is at B, x = 0 and y = 20.
] o a4 /300 —y?
Then C = 0 and x = - Y400-y” + 20 In D+ VAN -Y  55the equation of the boat’spath.
) o 20 + /400~ y°
Now AE = x + v 400 _yi_ =. 20 1n —_—_‘& Hence, when the boat is 12 feet from

_ _ ¥
AC (i.e., y = 12), x+16 = 20 1n 3 = 22,

The boy is 22 feet from A and the boat is 6 feet from AB,

91. A substance v is being formed by the reaction of two substances & and B in which ¢ grams of @
and b grams of @ form (a+ b) grams of v, If initially there are xo grams (3Q€t, yo grams of &,
and none of v present and if the rate of formation of y is proportional{te the product of the
quantities of & and P uncombined, express the amount (z grams) of Y:~fprﬁae8 as a function of

time t. o . >
. ' N @z \\ 3 bz
The z grams of Y formed at time ¢ consists of grams'\of. ¢ and grams of .
o o a+h NN a+ b
Hence, at time t the.re remain ﬁncombined {xg = oz ygpams of o and {yo - bz ygrams of B,
i _ . o a By a+b
. . . / b
then % = Klxg - Ey(y - <2y = ~—%r_k.‘.“bz (b - (2 - 2
# ard T arb Qe
S s" b
= k(A-z)(B-2z), wherel¥k - K“bz A:M"_O and B:EL)_yQ.
B o v i@ b
\ (a+ b}
o ..\\ . : :
There are two cases to be qoﬁ\S*iéer'ed: 1) A £ B, say A>B, and 2) 4 = 5.
1 d
1) Here dz i) - __1_._d§_ PR .. = kdt.
A-nB-2) 0 A_BA-z . A-BB-:z
Integrating fr,@‘t”: B,z =0 tot-= t, z =z, we obtain
S\ e . - A A- A A-B)kt
..'l.lnA d k-t‘c'".' "—I—(Ini—z—ln—)=kt. z:—e[ ! .
\A‘-;B B~zla A-B B-z B B-: B
V4 N . . .
A= Bkt
. . ABa- U-F1kty
an L L= - — TR
A —Be_( it
2) Here dz =k dt. Integrating fromt =0, 2 =0 to t =1, z =z, W obtain
A -2? '
2
z Akt
1 = ktlt , __l__ __'l = kt, and z = ——
A~zlo 0 DA~z A - ' 1+Akt
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26.

21.

29

30.

31.

36.

PHYSICAL APPLICATIONS

SUPPLEMENTARY PROBLEMS

A body moves in a straight line so that its velocity exceeds by 2 its distonce m::m a fixed
point of the line, If v=5 when t =0, find the equation of motion, Ans. x -~ He

Find the time required for a sum of money to double itself at 5% per annum compoundid con.
tinuously. Hint. dx/dt = 0.05x, where x is the amount after ¢ years. Ans.  L3.9 years
Radium decomposes at a rate proportional to the amount present. If half the originit amount
disappears in 1600 years, find the percentage lost in 100 years. Ans. 4.0%

In a cultnre of yeast the amount of active ferment grows at a rate propertional to the amount

present, If the amount doubles in 1 hour, how many times the original amount miy be oant ieis
pated at the end of 27 hours?  Ans. 6.73 times the original amcunt

If, when the temperature of the air is 20°C, & certain substance coels frum 10U ot GOC
in 10 minutes, find the femperature after 40 minutes, Ans. 25°C

AN
4 tank contains 100 gal of brine made by dissclving 60 lb of salt in 'rfztgr, Salt witler cons
taining 1 lb of salt per gal runs in at the rate 2 gal/min and the myefure, kept unitorm by

stirring, runs out at the rate 3 gal/min. Find the amount of snlt,,i;{: The tank at the cnd of
1 hr, Hint: dx/dé = 2 = 3x/(100-¢). Ans, 37.4 1b OD *?

Find the time required for a square tank of side 6 ft and de;ith ft to empty throneh o one
inch circular hole in the bottom, (Assume, as in Prob.9, wi=4.8vh ft/sec,)  dAns. 137 min

. w\J

A brick wall (k = 0.0012) is 30 cm thick, If the 1nner'@\1rfs.ce 18 20°C and the vuler is 00,
find the temperature in the wall as a function otfjtlié distance from the outer surtace and
the heat loss per dey through & square meter. _ ‘dms. T = 2x/3; 691,000 cal

A man and his boat weigh 320 lb. If the forgce exerted by the oars in the direction of motion
is 16 1b and if the resistance (in 1b) tq:.the‘ motion 1s equal to twice the spred (PLisec),

find the speed 15 sec after the boat stavts from rest. Ans. 1.6 ft/sec

A tank ecntains 100 gal of brine mdq\by dissolving 80 1b of salt in water, Pure waier runs
into the tank at the rate 4 gal/min/and the mixture, kept uniform by stirring, runs uvut at
tl.le same rate, The outflow runs into a second tank which contains 100 gal of pure wotcer ini-
tially and the mixture, kepi\udiform by stirring, runs out at the same rate, Find the amount
of salt in the second tapk‘efter 1 hr.

. dx 0. 04E I
Hint: o - 4(%e 0 °'f?:):e\4% for the second tank, Ans. 17.4 1b

~N

- A fumrel 10 in, ihdiameter at the top and 1 in., in diameter at the bottom is 24 in. decp.

1f initia]ly:fqll' of water, find the time required to empty, Ans. 13.7 sec

Water is f’l\ i i
ol fta/mjn Zvr\:ingisinto a_vertlcal cylindrical tenk of radius 6ft and hejght 9 ft at the rate
escaping through a hole 1 in. in dimmeter in the bottom, Find the time re-
quired to fill the tank. Hint: (-~ - _
Hint: (10 W 4-3'/5}dt = 36n dh. Ans, 65 min

A mass of i
the m:.s: 1: 21?‘5 ilsdes on a table. The friction is equal to four times the velocity, and
ubjected to a force 12 sin 2t 1b, PFind the velocity as a function of ¢ if v =

when ¢ = Q.
Ans. v =2(sin 2t - 2cos 2 + 2¢ )

&nijoe

A steam pi i j

A Dipep]i_zekzlf)td;:m:z:y ft has a Jacket of iusulating material (k = 0,00022) 3 ft thick.

Tae Dlpo 15 ket and the outside of the jacket at 75°F, Find the temperature in the
. 1stance x ft from the center of the pipe and the heat 1 foot of

pipe, Ans. T =75 — 400(ln x)/(ln 2y; %8 per S per 102

The dif i .
Fadis wieiznt;aclﬁig?a??;;f adzizcuxt containing a resistance R, capecitance ¢, and enf ¢ =

= t. ' .
at time t. EC/ Assuming R,C,E,w to be constants, find the current i

Ans, i = (coes wt + RCw sinwt) + Cie-tﬁc

69,000 B.T,U.

1+ Ric2w2



CHAPTER 9

Equations of First Order and Higher Degree

A DIFFERENTIAL EQUATION of the first order has the form f(x,y,¥) =0 or f(x,y,p)=0,
dy

where for convenience y' = = is replaced by p. If the degree of p is greater

than one, as in p?-3px+2y = 0, the equation is of first order and higher
{here, second) degree.

The general first order equation of degree n may be written in the form
D Pt P, y)p" Tt A e + Ppy (%, ¥y p + Prix,y) ’_\\*0'

It may be possible, at times, to solve such equationsx}ﬁy;‘one or more of
the procedures outlined below. In each case the problemis reduced to that
of solving one or more equations of the first order ,@‘d’:first degree.

W

EQUATIONS SOLVABLE FOR p. Here the left member of 1) ’ébnsidered as a polynomial
in p, can be resolved inte n linear real facters, that is, 1) can be put in

the fo ¢
¢ rorm (p=F ) (p—Fz) e oo oo fp=F) = 0,
where the F’s are functions of x and v O v

Set each factor equal to zero ar,lgifé"oive the resulting n differential equa-
tions of first order and first degree

o~ dy
%:Fi(x:)’)a "(j_;sl;z(x!y)r srrrrr iy, ?&:Fn(xs}’)
¢. & v
to obtain A\
2) fi(x!y,c):.ozp"' fQ(an!C)zo! """" t fn(x,y,c)=0.
WY

The primitive ofw'iff”is the product
3) ,{\\w?l(xl},’c)"&(x!}’ac) """"" &('X,Y.C) = 0
of the n solittions 2).

Not ““Wach individual solution o
eral possible forms pefore being cO

f 2) may be written inany one of its sev-
mbined into the product 3). See Prob.1-3.

EQUATIONS SOLVABLE FOR y, 1.€., ¥ < f(x.p).
pifferentiate with respect to x to pbtain

dy _ , - of o dp - pex,p By,
+ (Xde)

—__.P-——-—

dx x  op ¥

an equation of the first order and first degree.

Solve p = F(x.pr ‘-;5) to obtain é(x,p,C) = 0.

liminating p between y = f(x,p) and &(x,p,C)=0,

Obtain the primitive by e i
i arately as functions of the parameter p.
when possible, or express X and y Seb y the parameter p.

61



62 EQUATIONS OF FIRST ORDER AND HIGHER DEGREE

EQUATIONS SOLVABLE FOR x, i.e., x = f(y,lp_)_.
Differentiate with respect to y to obtain

i‘ﬁ_“:-'l'=§+9f§3=l"(y.p.—p)'
&y P ¥ pdy dy

an equation of the first order and first degree.

i

- Bolve .

Fy,p, gg) to obtain_ d)(y.p.C) = Q.

Obtain \the'primitive by eliminating p between x = f(y, P unhd Sy, p,Cy=0,

when possible, or express x and y separately as functions of the parameter p,

N ' Sede Problems 8-10,
CLATRAUT'S EQUATION. The differential equation of the form N

. -
4

y = px + f(p)

%
A
A

is called Clairaut’s equation, Its primitive is \’\

= Cx + f(C
y x ()'\‘

w/

"and is obtained simply by replacing p by\C{ih the given equation.

O N/ See Problems 11-186,
songgii;i;&)BLEms
1. solve p' - (x+ 2y+1)'.p.5 + (x+2yjf.2§§é}p2; Zyp =0 or pp-1L¥p-x)(p-2y) .
The solutions of tﬁé compo?g%[t e:;mtions of first order and first degree
%'\ib;'“%ﬂ. E%“’“* %—2y=0

are respectively ,\:w}
Nr=C=0, y-2-C=0, %-22-C=0, y-Ce®*- g,

al
S

The DriM.ilisi?é.' of the given equation is (y—C)(Jf-x—C)(‘x-’y—-z’-C)(y_ce“) - 0.

2 . .2
Solve xyp° + (x +xy+y2)p + x%+ xy = @ ar {(xp+x+ ¥ (yp+x) = O,

The solutions of the ¢ : dy
omponent equations x E +x+y=0 and y g_i’ tx =D

are respectively 2y + x - C = 0 and x2 + R

The primitive of the given equation is (2xy+x2—C)(x2+ yz-C) = 0

. Sol Ze0)p? + (a2
3 e HBPT o (ha-2y-yp Y axy =0 or [+ 1p-y)lzp+x-y)

= 0.
The solutions of the Component e | d
quations 4 = d
_ | . @+~ -y=0 and xi’+x»y-—-0
are respectively ¥-Cx+1) =0 and Y+ x lnCx = 0.
The primitive of the given equation is [y - Cx+ D]y + x in Cx] =0
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4 2 2
4. Solve 16x" + 2py-px=0 or 2y=px_16%.

P
R ’ 2
Differentiating the latter form with respect tox, 2 = p+ x dp _ 32 N 32;: % .
. . N - . ]
' P P

Clearing of fractions and combining, p(p° + 3%) - x(p° + 32x}£:?£ =0

. C oy o
or 1 +32)(p - x =) =0,
) {p Wp xit)

. ) . - dx
This equation is satisfied when p5+ 32¢=0 or p- x%: - g, Prom the latter, i';ﬂ = - and
p = Kx. Vhen this replacement for p. is made in the givea equation, we have
165% + KAy - K25t = 0 or 2+ Cly - Cx% =0, \{\
after replacing K by 2C. - ' : - O\
The factor p5+ 32x of 1) will not be considered here since it ‘d(:)g% not contain the de-
rivative dp/dx. 1ts significance will be noted in Chapter 10. N
L : . . . . ’t\ 4
A. Solve y = 2px + puxz_ v/
o aw\/
d w/ 2 d
Differentiating with respect to x, ' p = 2 = + ot + ap°x7 £
dx S dx
N\,
dp,
or p + 21{.&!})’(1 + 2P5x) = 0.
_ SRV i .
s ) dp _ 2 _ ¢
The factor 1+ 2p°x 1is discarded as in P,x:'ohlem 4. PFrom p+ 2x; =0, xp” = (n

N
N\ . Z - .
In parametrie form, wg.have. h:_c,__{??'pg, ¥ 2C/p '+ €°, thesecond relationbeing obtained
by substituting x = G/p® in the Bifferential equation,
» : 2 2
Here p may be eliminated without difficulty between the relation xzp = G or p° = C/x and

} . 2 -
the given equation. The latter may be put in the form ¥ - pqx oo 2px and squared to give
(y - p*x2y? = ap%i’. pré}p,wsubstituting for p?, we have (y — C9)° = 4Cx.

Y

N\
QO

N\ . x
6. Solve x = ’y\pd\‘ 5 :or'._i_y. .= 5 - p
) ' . 1 =xdp dp 3 2.dp _
Differentidting with respect to x, P = E— E a - a or p r +.(x .+ L )dx 0.
dx x P
B — é+ +p2 =0 o ==+t = = - —""
Then (p p)dp x +p B _ dp P-p P21
3 VopZal

ap/(p” =4)  _ p 5 . . _

The latter is a linear equation for which ejp 4 = -»-—-—p is an integrating fac

tor, Using it,

Ire —o Pz."l_ = -J ®_ - = In(p * Ypia + C

J¢ / Cp = -p — 1 1n (p +v‘p2—1).+ ¢ .
a - 4 2_1) + v Y = =P :
nd =z In(p P = : — : T

p?-1
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M. Solve y = (2+p)x +po

Differentiating with respect to x, p=2+p+ {x+ @)% or %; + kX = —p,
This is a linear équation hé.ving C#J'dp = eJ”J a5 an integrating factor.
Then xeéﬁ = —fpe%ﬁ dp = —2pe*?+ 4359 + C

and x = 2(2-p) + Ce—ﬂ. ¥y=8- pl+ (2 +p)Ce—*p.

8. Solve y = 3px + 6p°y.

Solving for x, I = ::—J - prz. Then, differentiating with respect to y,
3. 1_ydo_ oo d g
Y 2 2 2
= = == afy - -1 and (L+6p"y)y(2p + y /&<).°= 0.
PP g i 2py P Y (2P y,dxt

i
£ 3
3

The second factor equated to zero yields py = C. Sol\ring ror? “and substituting in the
original differential equation yields the primitive y = 3Cx +.

AN
3 2 2 4 .
9. solve p -2p+ 4y =0 or 2z =2 + X N0
Yy  pll
Differentiating with respect to y, {\\\\\1 ’
2 _2pd _p° 1_yd, W\ @, 02 _ 3
» v dy yz + 4(; - ;E ‘(E)Q ’:2:.,61' (P -2y =2y - py =0,

. d -~
Integrating p - 2y§§ = 0 and el,iginating p between the solution p? = Ky and the original
differential equation, we have, l\&r )= KK 2:)

This may be put in the form 2y = CC -2
by letting K = 2.

AN
£ )
‘\.

10, solve 4x = py(p? —3)\~

Differentlatmg'%{th respect te y,

O 2
5T Pet-D st E o & 3 -Ddp

= 0.

\ Y ¥ 2_ z

) (P -9 (p*+ 1)

Integrating, by partial fractiomns, Iny + 2 In(p+2) + 2 In(p-2)+ ?-ll'l(p2+ 1y = In €.
10 10 5

9/15 7 x =2 CP(PZ""”
2 2 i/ :

Then ¥

CLAIRAUT'S EQUATION,

11, sSolve y = pa+ Va+p?, The primitive is y = Cx+ V4 + €2, '

12, solve (y-px)? = 1+ p2.

Here y = px V14 p2,

The primitive is (y - Cx — V14 ¢y - Cx + /TCQ} 0 or (y-Cnl- 1+ c2.
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13, Solve y = 3px + 6y°p%. (See Problen 8.)
This may be reduced to the form of a Clairaut equation.
Multiply the equation by y* to obtain 3> = 3y’px + 6y'p,

Using the transformetion ¥ = v, 3y’p=% , this becomes v - x 32 + 27
= .

The primitive is © = Kx + %Kz or y3 = Kx + EKz or y5 - 3Cx + 6C2
: 3

14. Solve cos’y p? + sinx cosx cosy p - siny cos’x = O,

co
Y. @ reduces the equation to
cos x  dv

The transformation siny = u, sinx = v,

d.u+ du, 2

u =u£ (5). Then u=Cv+(32 or siny=Csinx+.Cz. {\
N\
15. solve (px - ¥){(py + %} = 2p, ’ ®) i
2 2 o du ~ON
The transformation ¥ " =w, x =9, p=—4 — reduces the.%uation to
gt dv X \‘
] \
vds % hdu | B tCdu A da g ds
(—yﬁaﬁu)(v£+v)—2—%&; or Fu&v u)(dv+ } »
u U WO
O
5 du RO C.
a0 - 2
Then u = ¥ du _ dv v and u =L - XL or 3’2 = G - .
dv du 1+C 1+C
1+ — R
dv N
FAY
v \

L M .
16. Solve plx(x -2) + p(2y -Zxy-z%D* y +y = 0.
The equation may be writp@:n}’a’.s (y —px + 2p)(y —pr # 1 = 0.
Fach of ¥ = px—2p a’hﬁ“'} =px-1 is a Clairaut equation,

O\
Thus the primitive%i‘s’ (y - Cx + 203y - Cx + 1) =0,

oy
NS

O
O
SUPPLEMENTARY PROBLEMS

Find the primitive of each of the foliowing.

2 -3, _
17. :\czp2 + xyp - ﬁyz =0 Ans, (y-CH(y-Cx 7y =0

2 =
18. xpz . (y—l'—xz)p _x(y-1) =0 Ans. (2y-x +Cy(xy~x+C) =10

Ans. Cy=12+62

19. zp® - 2yp + 4x = 0

2. 3:'p? ~xp-y=0 Ans. xy = C(3Cx-1)
20 8yp® - up+y=0 Ans. yz—Cx+2CE=o
2. Y +3px-y=0 Ans. y’-_s(_:x-cz=o
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23.

24,

25.

26.

21,

28.

28.

30.

31.

EQUATIONS OF FIRST ORDER AND HIGHER DEGREE

P -xp oy =0

16y°p° - 4xp +y = 0

2 - ' + @+ 1p? - 2pp”
oyp -y =0
y=2px+y'p (e -z.)
PP-ap -y =0 |

(L+p)x +p

y =20+ V1+p%
z
Yp —xp+ 3y =20
e
L\
L
£ )
::\s./
' M
\‘./
.?;‘\\

ety s

Ans.

Ans.
¥ (x¥y2)p—y=0 Ans,

Ans,

Ans,

y = 0x - (:2
¥ e Gl - 6
y-Ce-CHleoey o -0

26

x = C(p +1]ep. y - A{pTe

L TR

- 2 .
Ans. 3x=2p +CiVp, 3y =p -C/vp

2

n

Ans, 1 2(1-p) + Ce”

Ans. =«

O
Ans. x =M% 30 2)'5{“"\\ YO
W

NG
3
7
,(.,1\‘
N v
N
)
&
o)
Ke
«N ¢
N
TR Y g
s,:‘*

., ¥ =2- p2 + (:(].r‘u)c_"'

2 1np + In(p+v1+p%) + C,’@: op 4 ,/1_,?
A

2 2
3/ (Gl

bl



Singular Solutions—Extraneous Loci

THE DIFFERENTIAL EQUATION

1) .y = 2
has as primitive the family of straight' 1inés of equation

With each point (x,y) in the region of points.for which . gf‘féy_:»o. equation
1) associates a pair of distinct real directions and equatien 2) associates
a pair of distinet real lines having the directions determined by 1y. For ex-
ample, when the coordinates (~2,4) aré sibstituted in:1),"we have 4 = —2p +2p°
or p?—p-2 =0 and then p = 2,2{. Similarly, wher % is used, we obtain C =
2,—-1. Thus, through the point (-2,4) pass the ¥ines y'= 2x +8 and y =-x +2
of the family 2) whose slopes are given by 1).\ N\Points for, which x2+8y < 0

vield distinct imaginary p- and C-roots. = /W™

2) T

lines of family
N y = CGe+2C?

envelope
x2+8y =10

e - e

LR ey i e e 2' :0 :tilé.ré:..pasées:'but one.line
Through each point of the parabola, x- % 8y .=.0. there, )
of the :?limily, ihat. is, the coordinates of any point on. the parabola are s0
related that for them the f__two_:_c:i'?pgj_:'s'_,.of 3) .and the two p-roots of 1) are e-
qual. For example, ‘through the po

9x +8, and through the point (4,-

int (~8,—~8) there passes but one line, y =
2) but one line, y =-X +2. (See Fig. a.)

. . R Y T -y, hrbugh a point of x2 +8y =0
It is easily verified-that the-line of 2, thro :
s Lo o tarabola there, thal s, the direction of fhe parabosa &t
: AU e By .x2 48y =0 is a solution of 1).
a o of its poimts 1is -given by 1).:{-‘.Th.11$, X +8y = .
Igyisngalled a I;ingul“ar solution singe. it cannot be obtained from 2) by a
; ot that isy-§ince it is not a particular solu-

choi t arbitrary eonstant; :
tionceTﬁtfa cgiresponding curve, the parabola, 1S called an envelope of the fam-

ily of lines 2). (See Fig.-braboves) ™« o~
67
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Summary and Extension:

A singular solution of a differential equation satis_;fies the differentja)
equation but is not a particular solution of the equation.

At each point of its locus (envelope) the number of d_istinct dircetions
given by the differential equation and the number of distinct curves Eiven
by the corresponding primitive are fewer than at points off the loe s,

THE SINGULAR SOLUTIONS of a differential equation are to be found by expressing

N
EXTRANEOUS LOCI. (Differential equation,

the conditions
a) that the differential equation (p-equation) have multiple roots, and
b) that the primitive (C-equation) have multiple roots,

In general, an equation of the first order does not have simalar solg-
tions; if it is of the first degree it cannot have singularsolutions. More-
over, an equation f(x,y,p) = 0 cannot have singular solutddns if f(x,y,p) can
be resolved into factors which are linear in p and ratienal in x and V.

The simplest expression, called the discriminangzinvolving the coeffi-
¢lents of an equation F(X) = 0 whose vanishing is the'condition that the equa-
tion have multiple roots is obtained by eliminating X between F(X) - ¢ and
F'(X) =0. The discriminant of N

w\/
aX>+bX +c = 0 is bz-ftéc\,
QN
of aX> +bX® 4 cX +d = 0 is pacz + 18abca — 4ac? _ 4p7 o 2Tl d?.

ol

For the example above, the discpiminants of the p-
tical, being x? + 8y, AL

See Problem 1.

and C-equations are iden-
If £ i e

o h(X.y) = 0 is 2 singlar solution of the differential equation f(x,y,p)
E .tw ose prlqutn're’ls 8(x,y,C) = 0, then E(x,y) is a factor of both discrim-
Eﬁn s.1 Each dlsqumlp,zg}t, however_. may have other factors which give rise to
Other 1(;01 assmlatgq With the. brimitive. Since the equations of these loci
generally do not 's\a‘t;sfy the differential equation, they are called extrancous.

' f(x,7,p} = 0, primitive, g(x,y,Cy = 0.}
a) Tac chi}s

¥=0 is a tae locus,
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b) Nodal Locus.

‘ Let'one‘ of the curves of the family through P have a node (a double point
with distinct tangents) there. Since two of the n values of p are thus ac-
counted_for, there can be no more than n—1 distinct curves through P, hence,
the C—d}scriminant must vanish at P. The locus, if there is one, of all such
points is called a nodal locus. If N{x,y) = 0 is the equation of the nodal
locus, then ¥(x,y) is a factor of the C-discriminant. In general, ¥(x,y) is
not a factor of the p-discriminant and N(x,y) = 0 does not satisfy the dif-
ferential eqguation,

c) Cusp Locus.

Let one of the curves of the family through P have a cusp (a double point
with coincident tangents) there. Since one of the p-roots is of multiplicity
two, the p-discriminant must vanish at P. Moreover, as in the case of a node,
there can be no more than n-1 curves through P and the C-discpiminant must
vanish at P. The locus, if there is one, of all such points is‘@ cusp locus.
If C(x,y) = 0 is the equation of the cusp locus, then C(x,y){3§ a factor of
both the p- and C-disecriminants. In general, C(x,y) = 0 does not satisfy the

differential equation.
P\
\3’
O 6 6 (\3 N
y=0 is 2 nodal locus. N y=0 is a cusp locus.

S '\": + -
If the curves of the fanﬁ\ly g(x,y,Cy = 0 are straight lines, there are no

extraneous loci. RS _ )
If the curves of thelfamily are conics, there can be neither a nodal nor

cusp locus. K7,

,\\M: | ‘ | |
THE p~DISCRIMINANI"@LATION. The discriminant of the differential equation f(x,y,p) &
= 0, the p-@iscriminant, equated to zero includes as a factor

1} the eq\{a}tion of the envelope (singular solutiox_l) once, _See Problems 2-4.
{(The singular solution satisfies the differential equation.)

i i lem 7
9} the eguation of the cuspidal locus cnce. See P}'oh . ‘
) (The gquation of the cuspidal locus does not satisfy the differential equa-

tion unless it is also a singular solution or particular solution.)

. the tac locus twice. See Problem 5. ‘ B .
» ?gﬁeeggisi(i)gnogf the tac locus does not satisfy the differemtial equation

unless it is also a singular solution or particular solution.)

THE C-DISCRIMINANT RELATION. The discriminant of the primitive g(x,y,C) = 0. the
C-discriminant, equated to Zero includes as a factor RN
1) the equation of the envelope OF gingular solution once.

2) the equation of the cuspidal locus three times,
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3) the equation of the nodal locus twice. See Pr_oblem 6. o |
(The equation of the nodal locus does not satisfy the rl:!!urvr;t,ml equa-
tion unless it is also a singuler solution or particular solut ion.)

e When any locus falls in two of the categories, the mulltip_ligl-.it_._v uf‘ its e-

. quation in a discriminant relation is the sum of the multlp;u-;tuw; tor each

' category: thus, a cuspidal locus which is also an enw;io;xa is nn_-lurlvd twice
in the p-discriminant and four times in the C-discriminant relation,

The identification of extraneous loci is, however, more thun n mere count-
ing of multiplicities of factors,

SOLVED PROBLEMS LA
N
1. Find the discriminant relation for each of the following: (‘fﬂ )
_ 2 . 4
o) p5+px-..y=0, b) pix—-2p2y-18x =0, c)ys= C(x;;j(}} .
Note. These discriminant relations may be written readilj\&slng the formula o iven ahove,
We give bere a procedure which may be preferred, N/
i _ 2 ’\\." af " 2 Th e
@) We are to eliminate p between flx.yipy = p +px-¥*0 and 5 ¢ v x - 0. This is best
. ' done by eliminating p between \s\ !
X . . a ] 3 - . “x ‘:..
3f —Pg'—; = 3p +3Px—3y—-3p3—p.x = 2px-3%.%= 0 and %I = 3pzix 10, Solving the tirst
s‘f.' i p
tor p = ¥ and substituting 1 the second 2 27’ K z
o g€ 1n the second, we find Ip +x = 7 E o0 or 42Ty =0,

_ O e
Note. If f(x,y,p)=0 is 0f~.dé€&%

€en inp, we eliminate p between nf _pa_f -0 amd "aai = 0.
- . . . B N P
by We_ dre to eliminate pQQé.tﬁreen 3f - pa—f = 3p5x-.8p2y_.43x2.. 3p51 v 4p2y = -2;;2y - 4812 =0
and 9 3p2 4 ”"ﬁ\~ 4 2 2 z 2
— = X - £ =34,
Pl 'R\< F'romzthe latter we obtain gp*,? - 16p°y%  or o' — e’y = 0

AN\ 2 X
and from the fep = -24.2_, 2
e o .“\MWET. r 24 Substituting for P . we obtain ,1;“’(23;5 +27x0) = 0.
K oy o3 a2 s
€) Here Q‘““-J’.'Cl C 2%+ G’ ny 2 g and we are to eliminate ¢ between

3C

& aC SC_ 3 _S_C_x 30 -3y m3ct 40 o - a0, . 2¢%? 3y = 0 and
2) ?ﬁ =.3C?_.—‘_§Cx + x2 =0,

- MItiplylng 1) by 3 and 2) by 25, ang Rding, we have -20x? 4 33 _ gy - g
. 3 ' - s

AU . '
Substituting ¢ 3 - in 2) and sinplifying,

we obtain y(415 - 27)

n
=

2. Solve y = 2xp ~yp agd examine for singylar solutions

Bolving for o9y = ¥

=Y, . .
b ¥p ang _dlfferentiatmg ®ith respect to ¥, we have
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2 1.y dp,
- = m : : 2 dp
p y‘— or -1 + oy = 0.
p p pz dy - dy 3 (P_ e ydy)
dp e i
Integrating p + yd_y; 0 £o obtain . py = C -and substituting for p= g in the given dif-

ferential equation; we:obtain the- primitive -y?-: 20x ~ G4,

The p- and C-discriminant relations are 2 -y = 0. Bince both y = x and y = -x satisfy
the glven dlfferential equatlon, they are smgular solutmns.

1t pis ellmlnated between the dlfferentlal equation a.nd the relation p°—1 = 0, discarded
in this soluticn, the equation of the envelope x2—y2 is- again obtained, The presence
of such a factor .Unplles the exlstence of a smgular solution but not conversely. Hence, this
procedure is not to be used in’ fmdlng sifigular solutions,

The primitive represents a family of parabolas with principal axis along the x- axis. Each
parabola is tangent to the line y & x'at the point’(C,Cy “and to the line y \kx at the point
(C,-C). See Figure (a) below,

® O v
C=-1 . ~\
G=1 \\ \
NN,
X}
PR
Ty N\
x o LU 0 x
O
F'ig. (a) Prob, 2 _ F‘ig.___(_b’) Prob. 3
F‘amily of parabolas ¥l 2(§ 2, Family of straieht lines y = Cx + C7,
envelope ¥:= ix. envelape 4x3 + 27y% = 0,

\*

3. Examine p3 +px';y = o}:“f'e'r gingular solutions,

This is a Claix:a\lﬁ’: equatmn, the primitive being ¥ = Cx + G

The p- and*Cs discrlmmant relation 43’ + 27 =0 is a smgular solution since it safis-
fies the dlf}erenmal equaticn. :

The primitive represents a family of straight lines tangent to the semi-cubical parabola

4x3 +27y% =.0, the envelope. .See Figure b)), -above,

4. Examine 6p2y243pry £ ¢ 68 singaldr solntions. -

* From Problem 13, ‘Chaptér 9. thé primitive is” iy 3Cx + 6C7,

Both the p- and C- dlscrlmlnant relations are Sx + By __0. _ Siﬂce.this satisfies the dif-

‘ferential equation, itida smguiar ‘g6Tut 16i

5. Solve (x° ' 4)p2— 2xyp—x2 - ¢ and examine for singular solutions and extrameous loci,

s mgmth '_:_e'sr';e_ct to z, -we have
Solving for 2y # A0g AL,

% and differenti
-0 diftes
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6. Solve dxp’ ~(3x-1)2

SINGULAR SOLUTIONS — EXTRANEQUS LOCI

d
dp  4p _4dp 1, % or (p2x=—4p2+12)(p—xli—f) - 0.

2 =prX—+——-=— "~ 2

&
s
w
&
)
-]
B8

2 2 .
From p —x% =0, p=0Cx and the primitive is C (x -4) =2Cy -1 = 0, The p-discrin-
2 2
inant relation is x2(12+y2-4) = ¢, and the C-discriminant relation 1s x"+ y -4 - g,

Now x2+y2 = 4 occurs once in the p- and C-discriminant relations snd satisfies the dif.
ferential eguatien; it is a singular solution. Also x = 0 occurs twice in the p-discriminant
relation, does not occur in the C-discriminent relation, end does not satisfy the differen-

tial equation; it is a tac locus,

2 7
The primitive represents a family of parabolas having the circle x" +y - 4 us envelope,
See Figure (¢} below,

Note 1, The two parabolas through a point P of the tac locus x -0 havesat I’ a common tan-

gent, i A\
. V40 1

Note 2. A curve of the family meets the envelope in the points gj;j--:,—‘(‘_--. - }_) . henee,

only those parabolas given hy C:z Z § touch the circle, \ﬁ
Ks)
y '.\ ‘.)‘

envelope
2ey?=4

21e
S
"

1R
(- FI

:@13 of parabolas

"<?c,2(x2_ 4y-2Cy-1=0. Family of cubic curves

(y+CP® = x(x-12

\/ Fig. {¢c) Prob, 5 Pig. (d) Prob. 6

=0 2nd examine for singular solutions and extraneous loci,

Solving for p = 4(5 .2 _ 1 -1z .
PG 2 ) we obtain by integration y = 4(x° -~ 272y +C, oOF

(y+C)2 = x_(x—l)z. The p-discriminant relati z
relation is x(x -1y = g, ation is z(3x-1) =g, and the C-discriminant
Here x=0 is i
" common to the two reletions and satisfies the differential equation, that is,
x =0, — =0 satisfj i
& les the equation when written in the form dx - (3x-1) (‘i{)z =0 It
is a singular solution, v

3x~1=0 is a tac 1 .
occur in the C-discrimiz:;:i Silllce-lt O°Curs twice in the p-discriminant relation, does noi
) relation, and does not satisfy the differential equation
x=1=40 is a nodal . )
locus since it occurs twice in the C-discriminant relation, does not
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occur in the p-discriminant relation, and does not satisfy the differential equation.

Tk}e primitive represents a family of cubics obtained by moving y2 = x(x -1y along the
y-axis. These curves are tangent to the y-axis and have a double point at x = 1. Moreover,

through each point on x = 1/3 pass two curves of the family having a common tangent there.
See Figure (d) esbove.

2
Solve 9yp +4 = 0 and examine for singuiar sclutions and extraneous loci.

Solvipg for B8y = --4/‘p2 and differentiating with respect to x, we have

8 d
5—1: and x+C=—-8-—-

p 27p?

dt =

Eliminating p between this latter reletion and the differential equatiom the primitive
is ya + (ac+C)2 =0, A N

2 AN
The p-discriminant relation is y = 0, and the C-discriminant relation is y5 = 0. Since
y = 0 occurs once in the p-discriminant relation, three times in the C~discriminant relation,
and does not satisfy the differential equation, it is a cusp 10(,:&1%\ 3

The primitive represents the family of semi-cubical parabplq,\‘ébtained by moving y3 + 12 =0
along the x-axis. Each curve has a cusp at its iatersectich with the x-axis, and y =0 is the
locus of these cusps. See the figure below, \\J

¢. &\
Fahhy of semicubical parabolas
\ y5 + (x+ C)2 =0

A\
\s
NV

’1%50 and examine for singular solutions and extraneous loci.

3

Solving fQI:"\;(' ot zp and differentiating with respect to x, we have
\ N 2 .

O A

(1-2p)p+ x%’) - 0.

Prom 2P+xgg -0 px2=C and, eliminating p between this and the differential equation,
dx N

the primitive is CC+Cxy+x = 0. =

+

. L. 2
The p-discriminant relation 1is xa (xyz_ 4) = 0, end the C-discriminant relation is x(xy -4)

= 0.

xyz"4 - ¢ satisfies the differeﬁtial equation and is & singular solution.

x =0 isa particular solution (C = 0. Note that it occurs three times in the p-dis-

criminant relation and once in the (-discriminant relation.
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9. Exemine p’x-2p’y-16:° = 0 for singular solutions and extraneous loci.

' . 52 2
From Problem 4, Chapter §, the primitive is C'x - Cy-2:=0.

The p-discriminant relation is x2(2y5+27x“) =0, and the C-discriminant relation is
293 v27:* = 0.

Bince Zy5 + 2'!::“ = is common to the discriminant relatlions and satlsfies Lhe differen-
tial equation, it is a4 singular solution. At each point of the lipe x - @8, two parutolas of
the family are tangent there (for y< (0, the parabolas are real). Thus, x - 0 is o tuc locus,
Also, x = 00 is & particular solutior. Since it 1s obtained by letting ¢ - .=, [t 1 sometimes
called an infinite solution, Note however that when the primitive ts written as  ° Ay _of}
= 3, this solution is obtained when K = Q.

s N\
N
SUPPLEMENTARY PROBLEMS W
X ) ) K7, \ I
Investigate for singular solutions and extraneous loci ™
- 2 .
10. ¥y =px-2p". Ans. primitive, y = Cg;\\%'z: singular solution, ' 8y,
2 2 WO
1. ¥p +3zp-y = 0. Ans. prim,, y3+3c,}:.cz = 0; s.s8., Oxls .;yi 0.
N
2 »."‘”
12 %"~ 2pp+ax -, Ans. pringC%x’-Cy+1 = 0; s.s., Y-t o
2 o\ )
13. P o=2prxtly = 0. ARB,.\brim., 2"2*'2(:(1")')‘*(:2 ={, 8.s., xz b .'hy-—yz = 0
p ’\x\..} ’
2 2 C&\"
4. @By-1"p° = 4y, NAds, prim,, (x+C)2 - y(y-l)z: S5, y =00 L.y L/
nl,y-= L 2
AN/
15. y=~xp +14P2- o Ans rim = 2 2
o \i\{ < Prim, xy = C+C%%; s.8., 1+4x y =0, t.l., x -0
A _ _
16. 2y = p’+dxp, N ; 3 2
.“\":o S _:Ans. prlm., (41 +3xy+C) = 2(&2‘,).)5. no s,s. .
~D c.l., 22%+y 2 q,
17, y(3 -4y g S
F 1=y, Ans, i 2 5
e prin, @-C)" =y (A-yy s.s., y=1; c.l., y =0
R til, ¥y = 374,
18. p-ar'pipdy -y, ns. pri |
=t Ans, i = x2_ 3
S prim, y = Cx" - ¢7; S-S..hﬁ-z'fyz:o; t.1.. x = 0.

18.

Hint: TUse x = DCDSB, P
Y =psin 9,

2 z 2
P+ Dx=y) = @+yp), Ans. prim, (c-C+ (y-C)2 = % 5.5 xy=0; t.l., y=x



" CHAPTER 11

Applications of First Order and Higher Degree Equations

IN FINDING THE EQUATION __o_f___a. :"‘?UI'VB having a given property, (for example, that its
slope at any point is twice the abscissa of the point), we obtained in Chap-
ter 7 a family of curves (y = x*+ C) having the property. In this chapter
the family of curves will frequently be a family of straight lines. In such
cases, thecurve inwhich we are most interested is the envelope of the family.

SOLVED PROBLEMS

1. Find the curve for which: - o PAY

)”.\\
n} the sum of the intercepts of the tangent line on
the coordinate axes is equal to k.

b) the product of the intercepts of the fangent line <)
on the coordinate axes is equal to k. ‘\
¢} the portion of the tangent line.intercepted. ';_‘_s:_
the coordinate axes is of constant Iength ks ™

O

Let the equation of the tangent lihe"b'ejf.f‘

¥y = px+ f{p), ..

Y Y =P+ f(p)
the x- and y-intercepts being '—f(p)/{{ahd_f@) re-

spectively, K X
- N\ - 0 -fey/p
a) Since f(p) ~f(p}/p = k. -fipy = —kp/(1~p), and :
. . Vo . k
the equation of the tangeptﬂ.ine is. y = px - i

_b-p
O o )
This is a Clairaut.equation, the primitive being .
the family of linég\y = Cx._i% or £C2—(x+y_—k)c + y = 0, The required curve, the en-
Ry I-

\ 2 ook Ok : .
velope of the(family, has equation (x+y-k) = 4xy or x ty =&, Note that this curve is

an onv'elop\ (‘s“ingular gsolution) since it satisfies the differential equation and cannot be ob-
tained from the primitive by assigning a value to C.

&) Since f(P)[—f(P)/P] =k, f(p)= IV-kp, and the equation of the tangent line is y =

px * V~kp. This is a Clairaut equation, the primitive being
yoCiie 4V TCE of | ZC + G-zmCry =0
The requ'.ired curve, the envialcupe of the family, has. equation d4xy = k.
& Since: t{f(p)}z . {-f(p)}b}z]% =k, jfk y =t ééy:_iinzlv,and the equation of the tangent
line is y = px +.kp/1-" 1+P2;. The primitive of thig“equationis’ y = Gt kC/ e
oo ; R O AL X 7 -
Differentiating with respect to C, we ha"e 0 : x i%/(lzc ) 2 32 -
Then x = 7 k(s CHYE, y = G % K/ CHY? =~ HAC/CHT and the eqution of

230 - R s RO CY S -

kz/a

.

the envelope is

73
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9. Examine pax--2;323'-16::2 = g for singular sclutions and extraneous loci,

: 3 2 2
From Problem 4, Chapter §, the primitive s C€°2" - C'y -2 = 0.

The .p—discriminant relation is x2(2y5+27x“) = 0, &nd the C-discriminent relation ig
20 + 212t = 0.

gince 2y5+ 27x'* = 0 is common to the discriminant relations and satisties fhe differen.
tial equation, it is & singular solution. At each polnt of the lire x - 0. two parabolas of
the family are tangent there {for y <0, the perabolas are veal). Thus, x - 0 15 4 Luc looys,

Alse, x = 0 is a particular soclution. Since it is obtained by letting ¢/ - =, it 1. sumetimes
called an infinite solution, Note however that when the primitive is written s f Ky 243
= 0, this solution is obtained when K = 0,
.\\\
O
SUPPLEMENTARY PROBLEMS .\
O
Investigate for singular solutions and extraneous 1001\
10 _ a2 :‘\\'; 2 2z
. ¥y = px-2p°. Ans. primitive, y i'(h_zc v singular solution, & - gy,
23 ‘\\\\
1. ¥yp +3xp-y =0, dns, prim.,j‘i:j-fs’cx_cz = 0§84, 9x2+ 4)(5 _—
2 N
) _ _ . \N 2
12, xp® ~2yp+4x = g, Ans, prim., C xz-Cy+1 = 0; 8.s., y?--h? u.
. .i\
13. - - r 2
xp —2yp+x+ 2y = 0. Q{S-\ prim,, 2x +2C(J|:—y)+C2 =9, 8,8, 20 '.lzy—__v? - 0.
M. 3y -1’5 = 4y. SO dns rim 2 z
Q™ o PRI, (x4 C) = y(y-1)"; s.s,, oy = 0; t.l., y - 1/3;
'\ ni.,y=1,
x’\sw
15, ¥y =—xp +xup2. '® X 2
AT Ans. prim, xy = C+C%%; 8.8, 1445’y = 0; (1., < - 0.
..\
16, 2y = p2+4x N\ 3
. 2
m\li\ . .Ans. Prim., (42" +3xy+C)° = 2¢2e% + ), no s.s.:
\/3 c.l., 2x2+y=0.
. y@-ay?p? - 41
-¥). Ans, 2 _
e DRI, x-0) = oy ss, y sl e,y c O
e o tl, oy =3/,
" pj—flx“p+3x5' e _ .
y - 0- Ang. 1 - 2 3
Drlm-.J’—Cx—C; 5,8,, 4):6_27y2 = 0; t.1., x = 0.
2 2
9 0 D=9 = @iypf,  pn,

TR . 2 .
Hint: Use z ='p cos @, - PRIR,, (-C) + (y-C)° = Cz: 8.8 xy=0; tul., y 2%

Y = psin 9,



 'CHAPTER 11

Applications of First Order and Higher Degree Equations

IN FINDING THE EQUATION of a curve having a given property, (for example, that its
slope at any point is twice the abscissa of the point), we obtained in Chap-
ter T a family of curves (y = x*+C) having the property. In this chapter
the family of curves will frequently be a family of straight lines. In such
cases, thecurve inwhich we are most interested is the envelope of the family.

SOLVED PROBLEMS

1. Find the curve for which: 3 A\

Y N
a) the sum of the intercepts of the tangent line on ,*f\\
the coordinate axes is equal to k. Pa

b) the product of the intercepis of the tangent line O
on the coordinate axes is equal to k. 9\

¢} the portion of the tangent line _intg_rceﬁt'ed.h}i“:
the coordinate axes is of constant length k. \.
Let the equation of the tangent 1lihe be"'
y = petfp). RN
the x- and y-intercepts being —f (p)/peand f(p) re-
spectively, ' \\ S

. AN 0 -f(p/p
a) Since f(p) -f(p)/p =k, 'f(P-}'>—kP/ (1-p), &nd -
' . e kp
the equation of the tangent\ ;.1.ne. is _.y..= px - m .

AN : . .
This is a Clairaut gqqatlon, the primitive being

the family of liné\g\ ? = Oy — ,f% or -xcz.. (x +y-k)C + ¥ = 0, The required curve, the en-
N ' 1~ % . %%
Y 2 . -
velope of the~family, has equation (x+y—k) = dxy or x" 1y = k', Note that this curve is

an enVElOFQ\";Qingular solutiony since it satisfies the differential equation andcannot be ob-

tained fromYthe primitive by assigning a value to C.

by Since f(p)[—f(p)/p] =k, flp) = t¥-kp, and- the equation of the tangent line is y =

px t V"kp. This is a Clairaut equation, the primitive being
. : S B - 2
y-Ci'= £/TCE _or xCT+ (k-2nCHy =0

The I‘equ.-'ired curve, the envi‘!elope of the family, -.hags equition 4xy = k.

o) sinco [{ppY + el T = by £ BI/TERT. ond the cqtion of the tangent

. | D I . F]
line is 'y = pr +-kp//1+p?, The primitive of this equation'is 'y =(x & KM/ 1+CP
T i wem oS T R 32 :
Differentiating with respect to C, we have 0 R ik/(l;C ) Y 2 L
Then x = T k/(1+ c?.)'i{”; y = ot ks cHY? Turc’ /et and the equation of

230 ey x K e - K7

the envelope is

75
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APPLICATIONS—FIRST ORDER AND HIGHER DEGREE EQUATIONS

9. Find the curve for which:

a) the sum of the distances of the points (e,0) and (-a,0) from the tangent line ih.- (:qunl o
b) the sum of the distances of the points {(a,0) and (0,0) from the tangent line is cqual to 4,

Take PE=Y*EP) | 5 os the normal form of the equation of & tangent ]ine.
v’1+p2

\J’ \ Y —a+f£g)
1y
o
QJ (0,a) ¢
ap +f(p)
NRUY b f(p)
V1+P2 A
x —
(a,0) 0
\ :’\\
(@) 8 (b
oY ap + f(p) —ap  Hp)
a) The distances of the points (a,0) and (-a,0} from the line are *——" und ——-=—'- re-
O 1ep2 IRE:
¢
spectively, Taus, 210 . k, f(p) = $Rv1+p%, \and the equation of the tangent line 15 y =
1+p2 ’::'.,‘
px + zkv1+p?. The primitive of this Cls,i'l:'a’ai‘t equation is
R I A L TR o Ry )
The required curve, tie envelqu\af this family of lines, has as equatien x2 + y? - 4k%,
b) The distances of the points :(‘a,O) and (0,e) from the line are °F i and =% fon re-
O\ l"li-:{)2 y‘lt.p?

. —g +Mp¥2 ' V)
spectively. Thus, cf “3}5\ 1(p) =k, fipy= %[k 1+p2 —-ap+ a], and the equation of the
,\$1+p2

N W\
tangent lime is I px+ s [kvV1+p% —apt ), The primitive is y = Cx+ 4 [k/1+ C? —aC+als
N\

Differedtigting with respect to C, we have 0 = x + $[kCAN+ CF - o).

Then x = - $[kCA1+C* —al, y = AR+ al,

and the envelope of the family of lines
has equation x2~+y2-ax—ay = (k% - 2%,

Find the curve such that the tangent line at amy of ¥
its points P bisects the angle bet¥een the ordinate
at P and the line joining P and the origin,

Pix,y)
Let & be the angle of inclination of a tangent

line and ¢ be the angle of Isclination of P, Then, °_¢
if M is the foot of the ordinate through P, %0 -
angle OPH = 90° - & = 2(90°-6) = 140° - g,

Now  tan(90°- &) = cot ¢= tan(180°~ 26 = _tan 24
and tan¢b ten 28 = -1, ¢

0 M
Since tan P =y/x and tan & - ¥'=p, we obtain the /

- 90°- &




APPLICATIONS—FIRST ORDER AND HIGHER DEGREE EQUATIONS 7

$FF in i Yy 2p L :
differential equation of the curve e -1__.;.2. =-1 or 2 =xp~-x/p. Differentiating with

y _ 1 % d
respect to x, Ip =p _5+ (x + ;;]&—i' P(P2+1) =x(p2+l)%:» and zxdp - pdx = (.

. Integrating', Inp=Inx+1In¢C or p = Cx. Bubstituting for p in the differential equa-
tion, we obtain the family of parabolas CZ%2?-2Cy -1 = o,

Find the shape of a reflector such that light
coming from a fixed source is reflected in
parallel rays,

Let the fixed point be at the origin of
ceoordinates and the reflected rays be parallel T
to the x-a2xis, The reflector is ther a sur- A~
face of revolution generated by revolving a P,y fory =0
curve f(x,y) = 0 about the x-axis, : . \ Q

Confining ourselves to the xOy plane, let b s
P(x,y) be a point on the curve f(x,y) = 0, z
TPT' be the tangent line at P, and PQ be the Z

reflected ray. Since the angle of incidence T
is equal to the angle of reflection, it fpl-
lows that /ZOPT = ¢ = LQPT', e\

¢ & -2t
Now p =% - tan ZOTP - teng and tan ZTQRS tan(r-2) - ~tan 26 = 2L L,
dx a \d ‘ *
A\ 1-tan"¢
hence, % = o omo=1- ¥p.
x l—Pz P »:'." .

L 2,50 y dp dp dp _ _ 9y ¢
. t Sl L X p_yL and = = - . Then, R
Differentiating with respect to ¥ 3 o2 dy F ydy p ¥ Ty

Eliminating p between this relatiqua}d the original differentiz]l equation, we have the family
of curves y2 = 2Cx+ C% Thus&\the reflector is a member of the family of parabeloids of
revolution yZ + 22 = 2Cx + C%,
'\ “J
"\s.
(\Y SUPPLEMENTARY PROBLEMS
&
Find the curve.\'ffo’% which each of its tangent lines forms with the coordinate axes a triangle
) 2
of ccnstan<nrea a. Ans, 2xy =@
) 3
Find the curve for which the product of the distances of the points (a,0) and {—e,0) from the
2
tengent lines is equal to k,  Ans. ke? = (k+a?)(k-¥?)
Find the curve for which the projection upon the y-axis of the perpendicular from the origin
2 . -
upon any tangent is equal to k. Ans, %° = dk(k-¥)
Find the curve such that the origin bisects the portion of tl;e y-axis intercepted by the tan-
- 2 =
gent and normal at each of its points.  dAns. %+ 20y =€
Find the curves for which the distance of the tangent from the origin varies as the distance

of the origin from the point of contact. ?

4 8 1=k
Bint: -.—-——‘e-—--— =kp. Ars. p=Ce )

02+ (dp/d 6



CHAPTER 12

Linear Equations of Order n

A LINEAR DIFFERENTIAL EQUATION of order n has the form

n =1 n=2 {
1) P dy , Ptd LA Ped Y b oveiiene + P, D v Py 0,
o n dxn-—l dxﬂ—2 s ehx
“where P, #£0, Py, Py, - , B, ¢ are functions of x or constuants,

~

- If ¢ =0, 1) has the form A\

7 -1 n=2 \"..":
2) Pody + Pld ¥ + Pzd Y + ot sans 4 Pﬂ_" Qi}f Fﬂy [§]
dx" dx™ dx " ~F
. . ':0‘\\
and is called homogeneous to indicate that all gt\the terms arce of the same
(first) degree in y and its derivatives., v
)
3 2 N
Examples. A) x’ dy + 2x dy _ 5 d-—): ~ xy = sinx, ot order 3,
%’ P
2 o\
d
B) --—)2’ -3 # 2pv= 0, of order 2.
dx dx R )

Equation B) iS{nil example of a homogeneous linear cquation,

¢ '\'\.
SOLUTIONS. If y = y,(x) is a’solution of 2), then y = C,y, (x), where C, is an ar-

bitrary constant, is 4186 a solution, If Y=y (x), y=y,(x), y=yy(x), "+

giﬁﬁl’ég‘flms Of_"’??ythen_ Y= Cuya(x) 4 Coya(x) + Coyg(x) + oo is also a

A set o\f_s@f’ions Y=y1{x), y=y,(x), -
linearly i{:\(iqpendent if the equality

N

. §“ ‘313_’1 + C2¥e 1 Ca¥q Trereers b Ccuyn = 0,
where the ¢’s are constants, holds only when [

“o, Y=y, {x) of 2) is said to be

=Ce=Ca="°'=Cn:0‘

Example 1.:The functions e* and e*

are linearly independent. To show this,
form cye” + ¢,e™* = g,

_ i where c, and ¢, are constants, and differentiate to
obtain c,e* — ¢ e™* = 0. Wh

en the two relations are for
ey and c,, We find c, & ¢, = g, - . solved simultanecusly

Iji‘-:iample z Thé'f::nétidns ex': 2éx- 311&_ e are linearly dependent, since.
ey e +\ 2!'.?_?& .+ Ccge | = 0 when ¢y = 2, Ca= =1, ¢, =0
Cot SO . ] ] = .

A necessary and suf:.fici.e' e i _
early independent is thats  oIU%% that the set of n solutions be lin-

T8



LINEAR EQUATIONS OF ORDER n 79

i ) Ye Y LEEI £
¥y Yz Ys A
w = 1 ] " " # 0
y). Y2 B . YB * yﬂ
— - ’ s -
yiﬂ 3 yin 1) ygﬂ, 1) 'En 1)
If y=y.(x), y=y2(x), . V= (x are n linearly independent solu-
tions of 2), then ' n () ¥ pe
3) Y = Ci¥alx) + Coyalx) + vonee + Guyn ()
is the primitive of 2). N ' o &N
AN
If y = R(x) is a particular solution, also called particiilar integral, of
1), then : O
4) 7 =C,y (%) + Coy,(x) + «ove- '+-g,ég;;‘a(x) + R(x)

is the primitive of 1), Note that 4) contains a.lil}éf 3). This part of 4) is
called the complementary function, Thus the primitive of 1) consists of the
sum of the complementary function and a particular integral.

Attention has been called to the fapt\that the primitive of a differential
equation is not necessarily the colee{te solution of the equation. However,
when the equation is. linear, the .-pxjii;iitive is its complete solution. Thus 3)
and 4) may be called complete sglu’j:ions of 2) and 1) respectively.

3

LINEAR DIFFERENTIAL EQUATIONS wj{h c'onstént- ‘coefficients (equation B) above) will
be treated in Chapters .;3\1\16. Those with variable coefficients (equation 4)
above) will be considge;‘ed in Chapters 17-19.

27 SOLVED PROBLEMS
‘\'\\w dz d ) . s . -
: Y _ % 9. . @  has'two distinct solutions of the form y = & .

1. Show that the edtation —= - = =2y
A w? dx
"\‘ oo - -.. N B . . -
If y=e ', for some value of a, is a solution then the given equation is satisfied when the

ax d_y _ax

2 ax . i
replacements y = e , - e ., ; = a"e. - are made in it.

2
¢y
de
e‘”‘(az_ a-2) = 0 which is satisfled when & = -1, 2.

¥e obtain E-—-———Zy =
dxﬂ

Thus y = &

- 2 .; i NS i f Problem 1,
2. Show that y = Ce x4 Cge * ‘is the primitive of tFe: equation of P ok

quation, it is readily checked

Substituting for y and its derivatives in the di_ffgereﬁtial e

T6 shdw thét it is the primitive, we note first that

- 2x :
that y = * is a solutiom.
Y - Cue * Ca and the order (2) of the equation agree and second that

the number (2) of arbitrary constants
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LINEAR EQUATIONS OF ORDER n

- 2x
e € x =% = = are lirearly independent,
- = and ¥ = ¢
since F = =3 F#0, y=¢

- 2x

3
3dy gl + = 0 has three lincarly inde-
Show that the differential equation x ; 6x I« 12y
pendent solutions of the form y = P

After making the replacements

2 . 3 s
ye=o, Hon ‘_f__z - rr=x 3 = r(r=1)(r - 2)x
i i

r 2 . . .
in the left member of the given equation, we have x (f5— 3r -4r+12) =0 which is satisfied

2 3 . 2 . inde
when r = 2,3,-2, The corresponding solutions y = %, y = £, ¥ = % ”.c\{‘{m'“”-‘“ independent
2 3 -2 (:s.'::
x x x i"‘}
3 .3 . -2
since W = |2x 3’ Yo ) # 0. The primitive x{ \y = C,.x P oCpx v Uyx T
2 6 e ~ \
\J
i i "’ y dy : i1 and
Verify that y = - sinx 1is a particular integs&{ nf - Z -2 - cosx ¢+ 3slnx
write the primitive, W

Bubstituting fer y and its derivative‘s,’.;h“the differential equation, it is found that the

RS Y - Lo

equation is satisfied. From Problem 2,“the complementary function 18 y = (e * lpe ’
Henee, the primitive is y = (},é'\'\x + C.‘,e?'x - sin x.

¢ '\\..:

A
»

i oo/ 3
Verify that y = Inx ig,&particu]ar integral of x’ d_y_ - Bx Q + 12y = 121nx - 4 and
write the primitive. ,\\: dx?

“\ \
Subst1tut1ng f\ny and its derivatives in the given equation, it is found that the equation
is sat1sf1ed.‘ ‘Prom Problem 3, the complementary function is y = Cix + C1x + Cax -2
Hence{“npé primitive is y = Cyx> + Cox’ + Cax' 2 4+ 1n x.
' 4

dy d d’ d
Show that =& . 2¥ _ 4% & _ - .
R r e 2r = 0 has only two linearly independent solu

tions of the form ¥y = eax

.

Substituting for y and itsderivativesin the given equation, we have ¢ (a“—a’-3az+ 5a-2) =0
which is satisfied when e = 1,1,1,-2,
e & eF e
N ex e-2x ex ex ex _2¢-2x
ince
] ax| A0 e = 0, the linearly independent
e -2e I £ ex 46”2’:
ex ex ex -ae'"

selutions are y = ¢* ang y=e %%



LINEAR EQUATIONS OF ORDER n 8l

[ d . 1 _ x _ 2 x =
(o Verify that Y=e&,Yy=xe,y=xe,andy-=¢ 2% are four linearly independent solutions
of the equation of Problem 6 and write the primitive,

By Problem 6, y = ¢* and y = ¢ 2% i i i i
+ Y ¥Y=e€ are solutions. By direct substitution inthe given equa-
tion it is found that the others are solutions,

Ex xex xzex e'zx
x x 2 . - 1090 1
e’ xe"+ e 1’1 2me” 2™ x[110 -2 x
Since W = =€ |lan 4 = =5de” £ 0,
e w42 A% 4 4z 1 2 ge” % 136 -8
&* zé" + 36 X2+ Bxe®+ 6e” —ge~ ¥
these solutions are linearly independent ard the primitive is A \\
-2 (NS
y = Clex + ngex + Csxzex + Cqe %, im: “
DLy
8. verify that y = ¢ Xeosx amd y = e Psin3x are so]utions.hf"-—% + 4 -&% + 13y = 0 and
N dx

write the primitive.
\/ i .
Substituting for y and its derivatives, it is found&hat the equation is satisfied.
"\
Since W = 3¢"'* # 0, the solutions are lineagﬁv\ independent.

oo « ]
Hence, the primitive is y = e = {C; cos 3xa- C, sin 3x).

~ .
L™

A
LR Y
N

SUPPL@'&ENTARY PRUBLEMS
¢ \\
9, Show that each of the following sets of functions are linearly independent.

i\ 2
e) sin ax, cos ax NO e} 1, =z, %2 ¢y Inx, zlnx, x 1lnx

by ¢?* gin bz, P co"s\’!é}w d) %, ebx, e (a #h#e)
'S M
’\\w.

Form the different:j.aikqmtion having the given primitive,

...\' 3
10. y =C eu\(t‘:e'”‘ Ans, y"+y' -6y =0
.y =G ,
e " ' -
1. y = Clezx + szezx + Cﬂxzezx y" - 6y + 12y gy =0
5%
" - t - e
12. ¥y = Cye” + Cgezx + e”"/lz _ y' -8yt + 2y
13. y = Cycos 3z + Cpsin 3x + (4x cosx + sin %)/32 y" + 0y =x cos x

2 0 r -
x - 3xy’' + 4y =10
4. y = Cxxz + ngz Inz Y
3w ' _ et
? 4 2y xyl -y =3«
15'J’=C1_1+C2x1nx+caxlnx+x/9 Y

" -y o+ 4x5y =0

16. y = Cy sinx® + Cyco82”
. y"+(y’)2+1=°
1T, y = 1n sin@-Cy) + C2 2
ey =2
18. 42 = Cux + C, + 242
e 'Y =0

19. 2 = C; + Gy + y1ny



CHAPTER 13

- Homogeneous Linear Equations with Constant Coefficients

THE HOMOGENEOUS LINEAR EQUATION with constant coefficients has the forn
L4 n=1 f=2
g opdy  pd ¥y p d Y, i Y ony 0
o ax” S a2 ofx

in which P, #0, P,, P, ++++, B, are constants,

z

2 N
a cps Ay ooy
By a convenient change of notation, writing d . Dy, ;——J{ S popy
2 dx :m:dx.? TR
= Dy, etc., 1) becomes Dl
2) (Poﬂn N PtDn-l + PQDﬂ-z 4 varersaaas ¥ P‘n-{‘g‘\-f Py i,

Now D= d is an operator which acts on vand

o 07

. W

. . - )
3] Pc,Dn + Pibn + Penn 2 --}1\\4 Py D + Iy

is simply a much more complex operator. However, we shall find 1t very con-

venien:lt to consider 3) at times gsa? polynomial in the variable D awi 1o de-
note it by F(D). Thus, 1) may beiWritten briefly as

L\
4) A FDyy = 0.

;t can be shown in generai\\éhd will be indicated by an example that wlen 3)
is treated as a polynomial and factored as

) F(D) = By (DB (D—my) (D-mg)++++ e (D—mo_ ) (D),
then PRY
6) F(D)yzi\\jg'(ﬂ_ml)(ﬂ—ma) (Dug)rrenenns (D=mp_y)(D=ma)y - O

remains ga%ui, L.e., is equivalent to 1) when D is treated as an operutor.

3 . 3 2
EXA%’LE. In the D notation d_.l .2y
. dxs dx2

2
- 42; + 4y = 0 becomes (DS~D -4n+ 4y =0
and, in factbred fore, D-DD~2(D+2)y = 0,

Now

D-1)P-2y(D+2 - d
" DHD+y D 1}(D~2)(d—x+ 2y = (D-mD-z)(j_ia,zy)

d d 2
D-_1n{ L % dy d
:( 1{ ; (E 2 - A=+ 29} - (D-])(_.._..Z —4y)

d d’ d?

= = J

dx(dxz 43’)_1(E-43}
3

- 4y dy d&° 3 2

= ==~ _2Y o, - dy dYy dy -
dx de gz Y ot d12—4dx+4y—o.

In Problen 1 it wil
roblen 1 l?elaw, t :hll be indicated that the order of the factors here is immaterial.

an
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THE EQUATION  F(D) = (D~m)(D~m}(D=my)erv+r e (Do) (D—mp) = O
is sometimes called the characteristic equation of 1) and the roots my, m,,
my, ++++, my are called the characteristic roots. Note that it is never nec-

essary to write the characteristic equation -
rectly from 6). : | . since its roots can be read di

TG OBTAIN THE PRIMITIVE of 1) we flrst wrlte the equation in the form 6).
a) Suppose m, # my # my # ---------- # Mpy # mp.  Then
y = Cie™® + e 4 o™ + i + C,e™*,

involving n linearly 1ndependent solutions of 1) with n arbitrary constants,
is the primitive, . .

Thus in the example ahove, where -d-— - d— - 4 ;'!.3‘.’;* 4y = 0 or
dx5 dxa i"‘;é( o
(D-13(D-2)(P +2)y-= 0, the characteristic roots ape.l,2,-2 and the primi-
tive is y = C;e* + Coe®* ¢ Coe™™, <Z.\ See also Problems 5-7.
b) Suppose my = my # my F cerrriner Fompg é\m,, - Then
y = C.e™% 4 C,xe™* + ig:&e%sx P v Cpe™*
is the primitive. PR _:,-_~:-:,.-~“
In general, to a root m occurrm‘g r tlmes there corresponds
C,e™ + ngem&\{-- C,,x.ze S R + C,.xr-l ™
in the primitive. . ¢/ "
3

2
4y _ 4 d_y + 8y = 0, write the equations as
(D - 2D - 4D +83,y = (D 2) (b +2}y = 0. The characterlstlc roots are 2,2,-2
2% 4 Cyxe®™ +.C,6 7. See also Problems 8-10.

Thus to solve Q_____ 2

and the prlrrr{\t}lve is y = Ci

) are real a,nd 1f a+bi is a complex root of 8), so

c) If th\e coefflclents of 1
in the primitive are

also is” a-bi. The corresponding terms

Ae(a+b£}x n Be(a-abﬂx- - ea.x-(Aebix + Be—bix)

%% (C, cos bx + C,sin bx)

L Pe"F gin(bx + 0) = Pe®* cos(bx + R),

where 4,B,C,,C,,P,0,R are arbitrary constants.
’y dy 2
Thus the characteristic roots of -d;; -4 pre +5y =0 or (P"-4D+B5)y=0

] . . 2x .
are 2+i. Here a=2, b=1 and the primitive is y = e (Cicos x + Cpsinx),

See also Problems 11-15.
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SOLVED PROBLEMS

1. Snow that (D-a)(D-Hy(P-0)y = (D-by@-cyD-a)y-

(D ~a){D-by(D~c)y

D ~ay(D-b) (g - cy)

d!y

&y &y,
2

> - (a+b+)
dx

(ab + bec + ac)% - abey,

D -b)(D -c)(D-a)y

n

dy
- - — - ]
D-=by(D-c3( ! ay

dzy

~
i

3
d—-—"-{- — {a+b+ )

+ (ab+ac+bc)d—y - abey. .
dz’ dx

N

N 3

2
\
o

O
9. Verify that y = Cre® + Coe ™ + Coe’” satisfies thedifferential eqtng{.bp @-ayh-

b C £ &/
We are to show that (D—a){D—b)(D—c){Cacax*' Cee " +Cye r?) = Q.

(D -ay(D-by(D-c)Cre™
the other two terms.

D -5y (D -c)(D-a)Cye™

7

's\\w—b)(D—cm = 0, and

.’\;5
9. Verify that y = Ciemc+ C,xem+ Ce:cze"’c satgst‘i:és’ the differential equation (D -
This follows since: a) (D-m)ictem’;:‘(ﬂ—m)z (D-mCye™* = (D-m20 = 0,
B) D-m) Cokes = D-m°Cpe™ = (D-m)0 = 0, and
¢y (D-mACoxte™ = 20 - Coxe™™ = 2(D-m0 = 0.
&
4. Find the primitive of ( :-,,m)zy =0 (a) by assuming & solution of the form y = x
by solving the equivalent pair of equations (D-m)y = v, (D-myv = 0.
a) (D—m)zy = (f‘)’\i\m}(D-m)x‘reM = (D-mrz ™ - rer—13x 2™ - 0 when
Thus thewgtihﬁfion has two linearly independent solutions y = ¢ and y = xe
The pri}déive is y = CieM + ngem.
&y If we write (D-~m)y = v, then (D—m)zy = (D-mD-my = D-mv = 0.
Solving (D-m)v = 0, we obtain v = C,e” . Since D-my = g —my = Cpe

the first order, its solution by the method of Chapter 6 is

ye ™ = [e™ e )dx

61 + ng

x
ar

DISTINCT REAL ROOTS.
dzy
dxz

dy
dx

ﬁt Solve + - ey =

0‘

We write the equation as (D2+D..s)y (BD-2(D+3)y

Q.

-3, and the primitive is y = C,e> + Coe "

The characteristic roots are 2,

y = Cie™ 4 szem .

WITH CONSTANT COEFFICIENTS

2
(D_a)(‘ilz - (b+c)g + bey)

2
(D-b)(‘iT: - (nw)‘j—i ¢ acy)

By -ary=0.

similarly for

ny 0,

L O
[

and (b}

r=0,1.
ax

is linear of
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3 2
6.Solve iz—g-l-mﬂ:g.
ded dx? dx

We write the equation as (DS—DZ—I2D)y =0 or DD-4)(D+y =0

The characteristic roots are 0,4,-3, and the primitive is y = C; + Cge“x + Cse'5x.

2
P24y

3
V. Solve t
dx’ dx? dx

- 6y = 0.
We write the equation as (D5+ 2D2_5D_6)y .or (D-2(B+1{D+3)y = 0.

The characteristic roots are 2,-1,-3, and the primitive is y = Ciezx v Cpe 4+ Cae-ax.

REPEATED ROOTS.

8, solve (D' -307+D-Dy=0 or D-Hy-=oe O
3

o\
9. solve (0 +GD°+50°-24D-36)y =0 or @-2D+2D3Ny =0

-2 - -
The characteristicroots are 2,-2,-3,-3. The primitive\\iJs y = Cie2x+ Coe " Cse LR Caxe 5x_
$
&°

. "\
10. solve D' -pP’_ap*-11D-4)y=0 or (D+1)?'h3-'-4)y = 0.

o ¢ L , .
‘The primitive is y = e jc(C1+ Cox+Cax )+ Cae *.

L 2

The characteristic roots are —1,-1,-1,4,3

£

COMPLEX ROOTS. LN\

11. solve (DQ —2D+1my = 0, ¢ \\
The characteristic roots @e 1+3i, and the primitive is

O, x
y = & (Cycos 3% ‘4:.\1‘}25111 3x) or Cee'sin(dx+ Cy) or Cac cos(3x+ Ce).

i"\.:’
7 2
12, solve (D3+£LD)_)('£\Q> or DD+ 4y =0.
The characte;i;stic rocts are 0,+2i, and the primitive is y = G, + Cpeos 2 + Cysin 2r,

]
13. solve (D“+1’J§ +2p’-D+B)y =0 or @+ D+HO =Dy =0
The characteristic rToots are -1 +iv73, %i%iﬁ- and the primitive is
x .
y = ¢ *(Cycos V2 x + Cpsin VB x) + e (Cocos3VE x + Cysin /3 2).

2
14. solve (Dl' ¥ 5D2—36)y =0 or (D2—4)(D +9y = 0.

The characteristic roots are 2, £3% and the primitive 1s

e 4 Be ¥ 4 Cyeos 3x + Gusin 3x
o5 3x + Cy4sin 3x

y =
C,cosh 2x + Cosinh 2x + Cse

- 2w, 25 and sinh s B(e - € )
since cosh 2x = 3¢e  + € ) B8O

The characteristic roots are 1+2i, 1+2i, and the primitive is

15- Solve (Dg_ m+5)2y = Q.
sin 2x) + xex(Cscos ox + Co5in 2%}

y = & (Cyeos 2 + Co
L KU, + Coryoos 2z + (G Conysia 263 -
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SUPPLEMENTARY PROBLEMS

Solve.
16. (D2 +2D - 15)y = 0 Ans, y = Cee’ v et
17 @+ D% -2y =0 y = Cy b Coe® v Cye™
18. D*+6D+9)y=0 y = Coe ™ 4 Coxe
19 (D - 6D + 120% - 8Dy = 0 y Gy Gett o gxe® L ot
0. @P*-4ab+ 13y =0 Y= eM:(CI cos 3x v,(;:{\sln da
21. (D2_+ 25)y = 0 y = C; cos 5x + {5 yin 5x

3 .2 O
2. (¥ -D +9D~-9)y=0 y = Cpe* + f\eos 3x ¢ (4 510 3n

9 .\ I

4 2 .
2. D +adyy =0 y = C‘ns\é;x + Uy ton 20 0 (0, san Ma

4 2 . \) _
4. (D -~ 60’ +13D° ~ 12D + 4)}' =0 ;\&1 + C,x}e" + ({:3 N f"“.)elz'

6 y 2 (&
25. (D" +9D +24D7 + 1)y =0 ,.\\\\”.}3 =Cycosx s £, sinx + (4 (Ca)eos 22

\ \/ + {Ca+ Cyx)sin 2x
s“t’;“
N\
O
<&
)
L\
O
NGO
AO
'S
\“/
Q
A\



CHAPTER 14

Linear Equations with Constant Coefficients

THE PRIMITIVE OF
1) F(D)}’ = (PODH. +.-P_Drs-1-i+ .._T.;....:.'. ‘:.. '+”Pn_1D N P.n)y - Q(X),

where Py #0, Py, P, +-ver, P, are constants and @ = Q(x) # 0, is the sum of
the compiementary function (prlmltlve of F(D)y = 0 obtained in the preceding
chapter) and any particular integral of 1). (See Chapter 12, )'\

At times a particular integral may be found by 1nspect10} F'or example,
y = sx is a particular integral of (D*- 302+ 2)y =x, slnC&”Day =D?y =0, Such
equations occur infrequently, however, and we proceed .te.consider inthis chap-
ter two general procedures for abtaining a part.!culqr \integral. Other pro-
cedures will be given in the next two chapters. .

In each of the procedures below, use will he ‘ﬁnde of an operator F(l) de-

fined by the relation f-‘_(;IF‘F(D)Y = y. When \Ehe operator is applied to 1) we

obtain \\‘
{ N\

L FD)y &Y = —=—0

F(D) AN FD)
or N

1 I, 1 1

2 y = e = e AR —_—
) D—m, D’-—,-\@' D—mg D—my,

€ ’\\

FIRST METHOD. This conslsts of solvmg a successmn of linear dlfferentlal equa-
tions of order one\,‘ follows: . o

SET \J SOLVE T0 OBTAIN
u = 1 Q:M:' .?(.H - Mg = g u = e%x foe'-m.nx dx
D )\~ dx
'\/
v = _._l_..._u El‘_v -y V = U v g™m-1% fue M1 ® oy
D—my.y dx
y=—1_w H o my =w Y=9fo“’em1xd"
Dem, dx R

As is indicated inProblem 3'be10ﬁv.," the '_f'oll'owing formila may be established:

e™* fe{mg—m)x (ﬂ-a-ﬂz)"f ...... f (®n - “"'ﬂxf(? T (dxy"

See Problems 1-6.

4)

87
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: ; f expressing — as the sumof n partial tractions:
SECOND METHOD. This consists © D )

Ny +_’,‘_(?._.+..........+ M Then
D-m, D-mp D - my
B y = N,e"” fOe'W‘dx + Nae"”f'@e"”‘dx b KT _J e gy,
Sec Problemns 4-5,
In evaluabing both 4) and B), it is customary to :lisrurnl_mu constants of
integration as' they appear; otherwise, one obtains the primit v roather than
a particular integral of the differential equation. The complenentary funce
tion is then obtained by inspection and added to the particuluar smolution to
form the primitive. ’\
AN\
THE FOLLOWING FORMULAS will be found useful. Oy
-
ibx . ~ibx P ‘
e = cos bx + fsinbx e = £Oo8 b&—{ s bx
)
ibx -ibx L ST O
sinbx = £ & cos bx st
24 O 2
X7
e’ = cosh bx + sinh bx el cosh bx - siuh bx
O\
sinh bx = (e - & %) Ncosh bx = T TCIAE I

&
) EQLVED PROBLEMS

A

1. soive (D2-3D+2)y = ¢ .at}“.’ D-1)D-2)y = £,

N4
The complementary flglc{?fibh 1s y = Cye™+ Cgezx. and a particular integral is y - Lo L
\ b1 -2
1 “
Let u = = ef;.;\\Then (D~2)u = ¢ or i—l— 2= e, u¥- JF e de - [ dn - -
'»\’5
and u = — g%\
\,;

Now = - = 4 3 3 .

¥ D—IB' D-y=u or Y =—ex. and y = ex_f-ex Tdx = -xe
The primitive is y = Clex + Czezx - xé",

3 an? -2
2. solve (43 -4y =2 o gy Ny = xe ¥

The comple i i - x - -
plementary function is y = Cie” + Goe 2 . Caxe 21, and a particular jntegral 1is

y = 1 .1 1 -2x
D-1D+2 Dr2 '
1 ~2%
Let u = -2
pis*e - Then ot 2 * and u = e-zxfe'h. L T
2
i d:
Let » = g, T v =1 2.0
I hen dx+2v~-§xe * and v = e-zxf%xze-h-e”dx - Lo
6
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D-1

2]

.t dy 1 3 -2¢ -
Now y = v, Then Y Tre and y = exf-éfe'zx-e'xdx - %ex_]-xie 35 g
=~-il§ -zx(x5+x2+§x+§}.

R, x -2 - -
The primitive is y = Cye" + Cpe™” 4+ Caxe o 1—18(x3+ xz}e ?_x' the remaining terms of the

particular integral being absorbed by the compiementary function,

9. Find a particular integral of (D -a)D-5b)y = Q.

A particular integral is given by y = _1 ._1 Q.
Dwa Db
Let 1 Q = u, Then du _ bu=Q and u = ebfoe_bx dx, ~
n-b dx &
1 dy - b [ b )
Now = u. Then £ —ay=u = ¢ IQe dy  and ~N\
Y b a dx Y O
- - : - N, 2
y = e Qe de = & [P [aT (dny’.
X ..\\0
O
4. solve (Dz—SD+2)y = &% or D-1)D-2)y = eﬁx. \;
2° ¢
S\ . 1 1 o
The complementary function is y = Ciex+ Cgezx, afq‘&g.}ﬁartlcu]ar integral is y = 5___1 . m e,
N\
1 1 5 2 PN2-1)x 1 oBx -2x 2
First Method, y = ——+—— e = g:j.f'e S ¢ (dx)
b-1 D-2 &N
xx-sx,"QE_xxlsx I “xd'.x=le§x.
:efefe’“\wg&) —eje 38 dx Seje P
¢ '\,.3
L\
M - Bx 1 + 1 %
Second Method. = e g = = —— e
T T MSho-o D-1  D-2
"\x;.\s.o zx —
\"w?: —exfeﬁx-e_xdx o+ e fe ve dx
O "
‘::; 1
AN L1 & LN lezxeix _ S,
o\ 4 3. 12
N/
2% 1 5x
The primitive is y = Cie” + Cae *+ 5 € °
5. solve (D2+5D+4)y=3—2x or D+ P+4)y = 3 -2x.
i = e d a particular iantegral is
The complementary function is ¥ = Cre” + Cge -, @NCE 2D
y = (320,
O+ + 8
4 2
: 1L gy = S aomeT @
First Method, ¥ = E:_ Dra
7x 1 « 1=x 11 1
w1 x l Xy dx = e (o = xE + =€ ) = = =x,
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. _ i 1 - AT _..._-1/3 3~20)
p = —— N ——— -Zx = (-'_ )(
Second Method. ¥ D71 D+t 3 ) D+1 D+4
1 -ux 4x
- %a“” fa-208ds - 2 JB-20e &
1 -x X X x _l ""-’Ee"x_lxe“xf_lc“t) !__l_
=3 (3¢ - 2xe” +2¢7) 3¢ (4 2 B g 3%
- A 1011
The primitive is y = Cie * s Coe =~ Ex + -E .
2 2x
h. Solve (D’—5D2+aD-4)y - e or D-nP-2yy=e .
. 2 - )
The complementary function is y = Ciex + C,ezx + Chxe x, and a nurticu{@u tntegrad is
= 1 eax <:‘
- 2 . i,,\\ -
D-1(D-2) Dot
11 1 2 K70 M
¥ = s e ¢ . W
D-1 D-2 D=2 Q)
o J‘e(z-—l}x J-etz-ﬂx J’ezx e‘:u\\dx),
&’
a\ .
s & [Jidxy = €F j£§$x<dx>’ s & [t idd d
. 2 N x
= zex.rx e dx = ’ﬁe?f(‘xzex - erx + ?.ex) n -}ch(x'z— RESRINLL
The primitive is y = Cye® + Coetr +~Cotes” + yx%e°”, the remaining terms o!f Lhre particular
integral being absorbed in the comil@xentary function.
¢ '(:.3
L\
= 2 P
{+ Bolve (I +9y = x cos EPR
b Y
The Camplementary"\,tiu(mtion is y = Cycos 3x + C;8in 3z, and a particular integral is
o ‘ o |
§\ = ——rcosx = it Ie(iﬂit)xjxc%x N e,
RN D+o
o B . .
It widi\be/sinpler here to use cosx = $(e™ + &%y, 50 that:
' 4
;=3 b -2i i
Y = ze BxIe xfx(e 21x+ e'”x)(dx)z
1 3ix aix 1. —pi 1 ; : .
= = fe (s txe 7C+ _e~2tx+ _{ —Hix 1 —uix
2 2 4 41'13 + EB ) dx
I . T S N Y 1 wi ,
- I:(-—ue_ tae T Lyt 1 eix
1 amig 1 4 i [y i
= e (zxe — + —{g o _ 1 wx 24ix 1 . 2ix 1 2ix
2 e t wxe + - - —
8 32 16 6" 32 )
S SR TS - SO TR R x| -ix it -ix
lex(e +e )_.ézl(e _Etx):%x(e + e )+l(° - e ,
2 32 2t

1 1., '
= —XC08Xx + —Ej i
5 33510 %,  The primitive is ¥ = Cicos 3x + Cpain dx + %x cos z + f;l_zsmx.
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2
8. Solve (D"+4)y = 2 cosx cos3x = cos % + cos dx.

The complementary function is y = Cycos 2v + C,sin 2, and 2 particular integral is

Yy = Dz+4(cos 2x + cos 4x) = %1(0321 i 2)(Cos2x+cos 52
= 2i{e " f(cos 2 + cos 40)eFde - PF f(cos 2 + cos dnye T dx }
= %i{ euﬁxfeﬁx[%(eﬁx + e"ﬁx) + é(e“x "'”‘x)] dx
. e?ix J‘e—zix [%(ezéx —2tx) . _( -'M'.x)] dr }

1, -2i i b4 24 " . Y
- g{e sz(eMerHe $x+emx)idx - e”"f(1+e“"+e“"+e“”x)i,dxis}\

A

1 -2tx 1 %x , 1 tix 1 -2ix i -Iltx 1 21.x\ ‘1 -btx
= o = ix+ =€ - = - - - =
8{ ( g 2e } (u: i 2e~ 6 )}
, _ i . ) '\\
- —{-ix(e2 _ 21.x) . 1( 21.x 21,x) 1( Inx 'H.x) 3 &
O
) lx (eth_ —21:x) . l(e e 2=x) _ lteq'l-x: Wix)
4 21 2 12\:\\;'2'
. NS,
= —xsm2x+Técost-—cos4x. KOs
’:, Q:"
The primitive is y = Cicos 2x + Cpsin22% =¥ 5in 2x - 5 c0S 47,
L\
N\
i '3\

9. Solve (D°-9D+18)y = e . '1\\

O # . .
The complementary functihn”'is y = Cieﬂ + Cae x, and a particular integral is

:\so -5x _3x _
y = e - ebx J‘e-ax J‘ee ‘e 3% (dsz
\Qw 6)(D -3
..‘::.:2' —3x 1 ox 8_5:; 3 1 e—ax ox
ydx =

~eg e .
9

mJ _ bx [ -3x le .1 e
\/ = ¢ fe (—3e ydx 3e e (
w3
ix le b
The complete.solution is y = Cie” + Gy + §e e .
ixj‘eixj _bx(dx) .

Note. When the factors are reversed, & particular integral is y =

Using the substitution 3-5" = v, we obtain

v
e

L]

1
1 1 v z _ 1 vl _ lyg =
¥ - ﬁfﬁf" v () IR 902

or y = % e?  .e"®, as before
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SUPPLEMENTARY PROBLEMS

10. Evaluate, omitting the arbitrary constant.

1 x 1 x 1 2 0 .
a) D+le Ans, Ee d] b_:—l(x 1) Ans, x =l -3
1 x x 1 i
by _D-_—-le Ans. xe e} B—;—E sin 3x Ans, i:-lrr'.i ln fe - 3 eos 3y
<) 2 e Ans, x N L e sin s Ans. - LTt
D+1 D+2 B e
\\\
Solve. ..f \
, \ ‘s.;
1. D" -4D+ By =1 Ans, y = C,.e + C,e .\1\1/‘3
. \
12 (P -aDy=5 ¥ £ Cy v Coe)l sx/4
3 2 _ N
13. @ -4by =5 y = Cofax + Coe'™ = 5578
O\
4 D -aDyy - ‘ : -
D - 4D’y =5 ;@}C, fCox v Gr v Ce™ ) e Tt -5/

™

15. - . .
P - 4Dy = x ¥ Cy+ Cefu + Cye i

1:. (0® - 6D + 9)y = ¥ v{{\”i“ ¥ =Ce¥ o Cxe?™ 4 o
. (D +D -2y =2 -z -
PR S
N Y=Cie™ s Gue™ " v e (x* _ x
19. (Dz-.l)y = sin’x "\'E%'l\-,cos 2x) = C.e* -x 1 | 1 )
y=Cie" 4+ Cpe _Ea.ﬁcm;lr

20. (0*-1yy = ( \\e"" ~2
K Y= c‘ex + C,e-x -1+ In¢l + Xy

2l D%+ w"k Vsc x
22, (D \f) + 2)y = sine =%

¥y=C,co8x+ C,ainx + sinx lnsinx - x OS2

- x
Y = Ce™ 4 Coe® _ e sin 7”



CHAPTER 15

Linear Equations with Constant Coefficients
VARIATION OF PARAMETERS, UNDETERMINED COEFFICIENTS

TWO OTHER h_flETHO[_)S for determining a particular infegral of a linear differential
cquation with constant coefficients

1) F(Dyy = (D" + D™ + P,D"% + .iivvvnv+ PolyD + Py =0

will be exhibited by means of examples,

~N

VARIATION OF PARAMETERS. From the complementary function of 1)¢ \\
Y = Cayi(x) + Coavg(x) + vevenens s Gy @)
we obtain a basic relation \“
AN
2y = Ly(x) ya(x) o+ Ly(x) yp(x) +erens o AL (x) y(x)

by replacing the C’s by unknown functions ojf\}; the L's. The method consists
of a procedure for determining the L's sg.ﬁhﬂt 2) satisfies 1).

A\V See Problems 1-4.

\

UNDETERMINED COEFFICIENTS. The basic relation bere is
3y = An() + Brx + CR0) + e G (),

Q N
where the functions ri(x),'-.v)u, r¢(x) are the terms of Q and those arising
from these terms by diffefenitiation, and 4,B,C,.:-,G are constants.

For example, if {he equation is F(D)y = x°, we take for 3)

N y = A% + Bx® + Cx + D;
if the equatiphiis F(D)y = *+e’”, we take for 3)
) y = Aé* + Be",

:“\’:'
since né“grew terms are
if the equation is F(D)y = sin ax, we take for 3)

y = Asinax + Bcrosax;
the method fails since the number of new
= gec x is infinite.
.. are found from the re-
See Problems 5-6.

obtained by differentiating e* and e,

if the equation is F(D)y = SecC X,
terms obtained by differentiating @
Substituting 3) im 1), the coefficients 4,8,C, -

sulting identity.

The procedure must be modified in case:

plementary function. If aterm of 0,
ry function correspondingto an s-Told
sy plus terms arising from it by dif-

a) A term of @ is also a term of the com
say u, is also a ternd of the complementa
root m, then in 3) we introduce 2 term -x

ferentiation,
For example, in findin

¢ a particular integral of (=22 (D+3)y = ¥+ X°,

93
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L. 2 2x 2% co?* 4 Px? 4 Ex +F, the first three
ic relationis y = Ax e  +Bxe™" * . vem of
e e M eing fron the fact that the term e2* of @ is also b bert L the con
- . ble root m=2, hence, usce 1s made
rv function corresponding to 8 dou . o P -
g%er)njggg :;nd all terms arising by differentiation. See Problems 7-8,

b) A term of Q is x"u and v is a term of the complementary function, If u

¥ o .
corresponds to an s-fold root m, 3) must contain the term x"*"uv plus Lerms
arising from it by differentiation.

; H Ty P At 2
For example, in finding a particular integral of (D-2) (D +3)) Xt e xt

the basic relation is

y = APe¥ + Bx'e™ + Cxle® + Dxte™ + Exe®™ + Fe'* GxP v Mo S,
the first six terms arising from the fact that e?® ig u pirt of the comple-
mentary function corresponding to the triple root m=2. _see Brublem 9,

N
SOLVED PROBLEMS O
VARIATION OF PARAMETERS. O 3

R

1. Show that if y = Cyy; + Ga¥a + Ca¥s 1S the complementary function of

Fchy = D’ + Pi.D! + PQD.*,\}:-J)I = Q
A 4

)] y = ban ﬂlfzz)’a + Layya,

where Ly, Ly, Ly satisfy the conditions ,;1;75‘

then

L;h *’J;%.)'-z + L:;Jfa

= 0
o Lighy Ly o Liys = 0
Y+ Ly« Livd = 0.

is a particular solution of it‘;he differential equation,
¥/
We obtain, in view,pivA), by successively differentiating

"\ Yy = Liyt s Loys » fayn:
D}’ = L,&»{' L‘zyé + La)’; + (L;.Zh + L;yz + L;ys) -

Liyi + Loys + Laya

] "\ i’} " " o
By Dy =xliy + Loye + Lays + ays + Loy + Lays) = Luyy + Lays + daa
} :"} v i ur " 13 ) ity are "
D\y‘, F Lyys + Loys + Loyg + (Layi + Layz + Liys) = Lyyy + Loys + Laya + @
Then FD)y = Li{ys + Payy + Pay{ + Poy} + Lo{ys + Piys + Poys + Pays)

+ Ls{y':'; + Pa}':;’ + Pe)'; + Paya} + Q
= Ly FtDyyy + Lo FiDyy, + L, FiDyy, + @

= Q+0+0*f‘)‘(\).
since yi, ¥2. ¥s are solutions of F(Dyy = 0.

In using this method:

a) Write the complementary function,
by Form the L function 1), which is to be a i

, particular integral, e (s of the
complementary function with L's. grel. by replacing th )
c)

Obtain equations B) by differentiating 1) as many times as the degree of the differentis!
e?uatlon. After each differentiation, set the sum of ell terms containing derivatives of-the
L’s equal to zero, except in the case of the last differentiation when the sum is set equel
to Q. The equations obtained by setting the sums equal to zero and ( are the equations A)s
d) Solve these equations for L,, L),

LE RN F e
.

e) Obtain L,, L,, «+savees by integration,
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2. Solve (D2 -2y = & sinx.

The complementary function is y = £, + Cgezx

We form the relation ¥y = Ly &+ Lgezx,
obtain, by differentiation Dy = 2L2e.2x + (L + L} %y,
and set 1y Ly+ L;ezx = 0.

. 2% o2
Since now Dy = 2Lye™, D% = 4L,e% 1 2LLe® and we set 2L.e?* = Q = € sinx.
Thus, Ls = e ®sinz and L; = = e %(sin x + cos x).

't 2x x .
From 1), L1 =-lge"” = —%e" sinx and L, = 1*ex(sin % — COS %),

A particular integral of the pgiven equation is
2 . ..
y = Ly +L,e™ = - {;ex(smx - ¢0S x) ~ k€ (siitx + cosx) K \ $e* sin x ,

and the primitive is y = €y + Cgﬂzx - %ex sinzx. ~
3. Solve (D5+ Dyy = csc x, ey
The complementary function is y = €y + Ceco8x + Casinw’.

'\\.l
1,1 + j.g()llsx + L351I‘i§(
N\

From the relaticn Yy

\ 3 .
we obtain Dy = (-Lpsinx + Laq@?‘x) + (L] + Ljcos x + Lgsin x)
and set 1 Li+ Lycosx + z};:s{iﬁi = 0.
Then Dy = -L sin'x‘}w‘Lscos x,
Dzy = (A&\cosx - Lgsinx) + (—Lgsinx + Lscos %Y,
and we set 2) —Lgsmx + Lycosz = 0.
Then D\zy “= -Lgcos x — Lgsinx,
\ -
’\ﬁa = (Lysinx — Lgcos x) + (—L;cos x - Lysinx},
and we set Q\ -Ljcos x - Lisinz = @ = cscx.
R\
Adding 1) and 3, L; = csc x emd Ly = - In{escx + cob x).

Solvmé\zi ;ind 3y, Li'=-1 and L; = - cotz, so that Ly =-x and L, = - In sin =,

Thus, a particular integral of the differential equation is

y = L +Lgcosz + Losinz - - In{csc x + cot x) — cosx In sinx - x sinx,
= Ly 2
and the primitive is

y = Gy + Cycosx + Cesinx - In{cscx + cot x) ~ cos x Insinx - x Slnx,

4. Solve (D°-6D+9)y = e /i,

. =C 3% + C. xeax.
The complementary function is ¥ = ta€ z

3% 3%
From the relation y = Lje # Loxe

3% r3x !
we obtain Dy 3Ly + Lz}esx + 8lgxe’ + (Lie” + Loxe

B AP .
and set 1y Lye™ + Lpze

535)
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' T T toy
Then DYy = (8Ly + BL)e> 4 oLze” + (3Ly + Lpde + 3laxe’,

o3x o 3xp2
and we set 2} (3L;+.L;)e5x + 3Laxe” = ¢ /2.

Solving 1y and 2), Li=— Va snd Ly = Va®, sothat Li=-lnx and [y -lx,

Thus, & particular integral of the differential equation 1s

ix Ix
y = L1e5x+ L,xejx t -¢ Inx-e,
3% 3%
and the primitive is y = C1e_5x + Cpxe”” - e Inx.
UNDETERMINED COEFFICIENTS.
2 s )
B Solve (D" -2y = € sinx. ,\\\
The compiementary function is y = Gy + Cgex . As a particular 1nu:u ul, we take
x ¥ i )
y = Ae sinx + Be" cosx. A
Then Dy = (A- B)e sinz + (A+B)e cosxo\‘\
Dzy = - 2Be" sinx + 24€" cosxz, "NV
end (D' -2b)yy = - 24" sinx - 2B cng;\“; Fstnx =
RS
Equating coefficients of like terms, -24 = \\ and -2B = 0, so that A - -3 and fi =0,

Hence, a particular integral of the dlfferéntial equation is
y = A’ sinzx +‘.Bs co8x = ~-he sinx,

and the primitive is y = Gy + C,e -\%e sinx.
Q)

This was solved above as Prob;gm}Z.
¢~ \ 4

6. Solve {D2—2D+3)y = 2 4'6“511::.

N \.
The complementaryinnction is y = ex(thos V2 x + Gpsin V2 xy,
ve take ~z;(\- Ax3+Bx +Cx+E+Fsinx+Gcosx
Then \Itb; =
\} .Dzy

and  (D®_2D +3)y

As a particular integral,

3Ax2+2Bx+C—Gsinx+Fcos::

6Ax+ 2B - F sin x - GG cos z,

3 2
34x" + 3(B-20)x" + (3C-4B+64)x + (3E-2C+ 2B) + 2(F+ G)sin x + 2(G —F)cos

3 .
x” + sin x.

L

Equating coefficients of like terms, a4 = | and A = 1/3; B-24-0 and B = 2/3;
A ~48+64=0 and C=2/9; 3E-2C+28-0 and £ = -g/27: 2F+Gy =1, G~-F =0 and F=G =&
Thus, a particular integral of the differential equation is
2 2 2 8 1
2+ =x + Dy -2 =
3 s 27+4(sinx+cosx}.
and the primitive is

x :
= l
b € (Cieos V2 x + Cpsin V2 x) + 7 (97 + 18:° + 6 - 8) + l{sinx v oS 1)
4
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solve (D'+ 205 ~D-2yy = & + 42,

The complementary function is y = C,e” + Cpe™®
the complementary function
lar integral

-2 .
. _ + Cge %, Since e occurs in Q and also in
orresponding to & root of multiplicity one, we take as a particu-

1) ¥ =Ax2+Bx+C+Exex+Fex

Then Dy = 24z + B + Exe™ + (£ +Fye,
Dzy = 24 + Exe” + (2B +F)e”,
D3y = Exe” + E+F) e,

and (D" +2D°-D-2)y = -2 - 2B+A)x + UA-B_20) + 6Ee* = & + 22,

qullating ciefficients of like terms, -24 =1, B+A -0, 44-B-2C =0, 6E = 1, hence,
A =x- ™ B=5 C =‘%, E= ;', and F is arbitrary., MNow F should be bitrary here, since
C,e” is a term of the complementary functien. Thus, in writing 1), theainclusion of Fe* was
UNNEecessary, M)

Hence, a particular integral is y = —éx + =x - g + - x¥¢ .'

$
and the primitive is y = Cye* + Cge + Cae™ 2 - %x’ . %k\‘_’ 5, 1.2
3* A
2 5 2% 2x ";\\w
Solve (D ~4D+4)y = x'e  + xe . : '\\ .
The complementery function is ¥ = Cle t{:.;xe"”‘ Now e2* is a part of @ and also occurs

in the complementary function correspondlqg‘ Yo & root of multiplicity two. As aparticular in-

tegral, we take 2 2 2

Ny
5 2 2x + Ex e .

y:Axe‘+B + Cile

Note that terms involving xezx an,d\q\zx are not included, since they appear in the complementary
function with arbitrary coeffioé\énts. Then

2
Dy = 24x 32 (54 +23)xq’.x + (f;,B+ZC)Jv.c3 L (3(2{»21'3):|:2e2’c + 2Exe ¥,

Dzy = 4Ax ¥4 (20A+4B).-} ezx + (204 + 163+4C)x +(1ZB+ 12C+ 4E)x292x + (6C + BE)xezx + 2Ee2x.

2 3 2x 2x
and (D—4D+4) a~\20Ax52x+lszex+BCxex+zE = xe + xe .
Elmatmg coeff'icwnts of like terms, 204 =1, 12B=10, 8C=1, 2E = ¢; hence, A =1/20,
B = o, ms, E=o0.
\' 1 & 2% 1 3 2x
Thus, a“particular integral is y = o x'e  + -éx e,
2x x 1 § 2¢ 1 3 2x
and the primitive is y = GCie + Coxe™ + ﬁxe + Exe .
) 2 2 .
Solve (D" +4)y = x sin 2x.

= Cycos 2x + Cpsin 2x.
s a part of the complementary function correspond-
articular integral

The complementary fuaction is ¥y

Since x° sin 2x occurs in @ and sin2x i
ing to & root of multiplicity one, we take 28 &P

y = A0 cos 2 + B sin2x+Cx cos 2 + Ex’ sin 2z + Fx cos 2 + Gx sin 2.

Note that H cos2x+ Ksinﬁx is not included,
tion, Then

since these terms are lun the complementary func-
2
Dy - 2B cos2x - 94x? sin 2 + (34 +2E)s cos 2v + (3B-20)x sin 2

+ (2C+26)x cos 2z + (2E-2D)x sin 2c + F cos 2x + G sin 2z,
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.2
D%y = -adx’ cos 2 - 4By’ sin 26 4 (12B-40)x” cos 2x + (-12A-4E)x” sin 2
+ (6A+8E-4F)z cos 2x + (6B-8C-4G)x sin2s + (2C+4Gycos 2+ (3£ -4 sin2x,
and

(Dg+ Oy 12Bx” cos 2 - 12sz gin 2x + (6A+8E)x coslx + (65 -8C)x sin2x

2
+ (2C+4G)cos 2x + (26-4F)sin2x = x gin 2.

Equating coefficients of like terms, -124 =1, 12B=0, 64 +8E - 0" 68 - 8C v 0,
9C +4C = 0, 25 —4F = 0; hence, A=-1/12, B=0, €C=0, E-=116, F = 1/32, G=0

1 3 1 2 1 .
A particuler integral is y = = 3—2 z° cos2x + EE x Bin2x + -é-é x COS 2r,

5

1 1 2 / 1
and the primitive is y = Cycos 2r + Cy8in2r - ﬁz cos 2x + -i-éx ﬂlr\{x\ + ﬁxcosz:r.

N
SUPPLEMENTARY PROBLEMS
\/
Solve, using the method of variation of parameters, {\
2 O
(D" + 1)y = csc x Ans, yi,%b‘cosx+ C,slnx + sinx lnsinx ~ x co8x
2 2 o
1. D" + 4)y = 48ec 2 Ans, yw=iycos 20+ C,8in 2x — 1 + sin 2x In(sec 2x + tan )
2 -x =1 N -
(D° - 4D + )y = (A+e7) W Hns y = Gt 4 Cued s e s b(eF - Ty (™)

13. 0 - Dy = e  sin e & c S\C-

4. % - Dy

'\
Ans, ¥y = Cee” 4 Cue™* _ ¢¥ sin ™~

(1+ e-x)-z ..: ::
P N\Y;

x\’...

Ans, ¥y =Cie” + Ce™F — 1+ e lnl+e’)

Solve, using the m%ﬁ\ft}f undetermined coefficients.
AN

15. 0 + 2y 2% + 2

16.
2 2

17. (D" + 2D + 2)y = x +sinx

18. (p% - 8)y = x+e_sin 2

19. (D5 + 3D2 + ZD)y = 32+‘!I+8

20.

2L

AN Ans. y = Cycos v2x + C,sin V212 + e /3 + 1
2 /N x . _
@D 1\1/)"7 =e sin 2 Ans, y - Ciex + Coe *_ ex(sin 2x + cos 2x)/8

Ans, y = e'x(C,cosx+ Cosinxy + %(x-l)z + %(sinx# 2 cos x)

dns, y = Cleix . Cge-jx - 2/9 - ezx/ﬁ . 'ilg sin 2x
(Use Ax”+Bx?+ Cx.)

- - 11
Ans, y=C,_+Czex+C3e 2x+%x’+ix2+71

2
D"+ 1y = —2sinx + 4x
cos x Y =0Cic08x + Cpsinx + 2¢x cos z + 12 sin x

Ans.

3 2 2
(D" =07~ 4D+ )y = 2" ~ qx — 1 + 2% | g , o

% -
Ans, y = Cie” + Cpe® 4 Cae 2, %xz + éxieu



CHAPTER 16

Linear Equations with Constant Coefficients
SHORT METHODS

A PARTICULAR INTEGRAL of a linear differential equation F(D)y = @ with constant

coefficients is given by y = ﬁo. For certain forms of Q the labor in-
volved in evaluating this symbol may be considerably shortened, as follows:
a) If ¢ is of the form e*, ~
1 ax 1 ax ‘ \\
y = F_(D) e = F(a) e , F(a) f:ﬂ"":’
O
See Problems 2-3 when F(a) # 0, and Problems 4—5.wheh F{(a) = 0.
LN
by If Q is of the form sin{ax+bd) or cos(ax~+‘§>
y = —l sin(axth) = 12’.@&1@; +b)y, . F(=a®) # 0,
Fp*y = - FeadY
. :\\\;
= 1 cos{ax +b) =..j;’;"12 cos(ax + b), F(—az} # 0.
F(D%) AN F(-a)
See Problems 7-11 when E('\-\‘;z) £ 0, and Problem 12 when F(-2a%) = 0.
)
¢ &N
¢y If © is of the form*«t,
_ Lo o (ag+ aD+ aD ke +a DMx®,  a #0,
E®)

i Nndi 1 i D and ing all terms
obtained by expanding -—— 1L ascending powers of D and suppressing
R FD)

beyond Qg:fsince p"x™ = 0 when n>m.

See Problems 13-15.

\‘:
/ 1 ax _ ax 1
d) If O is of the form eV, ¥ = pp- ¢V T ¢ Ty v.
See Problems 17-20.
17 1 F'(D)
. - e xV = x V - — V.
e) If 0 is of the form xV(x). Y FD) F(D) (FD) Y

See Problems 21-23.

SOLVED PROBLEMS

1. Establish the rule in &} above.

Ll e r oax

Since when y = e, Dy ~ ™, D’y = 2™, ererraeeneres » De =ace,

ax roax . = Fa) ™. Hence, L e = L ™
FiDye™ = %P,.D e = %P»ra e = F(b) Fla)

99
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4 4x

2. solve (DE—ZDZ-5D+6}y = or D-D(D-ND+2)yy =¢",

Ix ~23%
The complementary function is y = Ciex + Coe”” + Cge 77,

1 4x

e
(D-1D=-3){D+2)

A particular integral is ¥

1 ellx 1 4x 1 ua
(4-1}(4-3)(4+2) 3:1-86 18

- -2
Hence, the primitive is y = Ciex + Cgesx + Cye Tr ek,

8. solve (Da—2D2-5D+6)y = (e2x+ 3)2.

The complementary function is, from Problem 2, Y = C,,ex + C,e’x + Bae

A particular integral is y = 1 2x+ 3)2 \

(e \
D~y (D-3)(D+2)
¢
= 1 ellx + 8 ezx“(\‘\‘ 2] eg,
(D—l){D*—S}(D‘i-z} (D—l)(D—B)(D+2) QS (D_l){D_a}(D*z)

.1 u 6 o 9 N

= —_ _ g s -
18

e + =2
(18 1(-1)4 - -2

NS
- sa‘x 3 2x
The primitive is y = Cye” + Cpe™ + G p 5 _ 3¢, 3
o818 2 2

4. sotve (D’ -2 5D+ gy = &, A

The complementary function is Qa_- Cye* + Cpe™™ + Coe™ %

A particular integral is, 5,‘_ 1 E2N ] ]
2NE T @-1HO-HD+2 o F(a) = F(3) = 0, and the short

method does not appiy. xHowever we may write

- \1~ 5x 1 1
y . 3y o b o1 sy 11 5
(D 11219 -3 (D +2) D—S((D-IJ(D+2)e ) D—3(;§e ) 003
3x ™ - 1
e L R U
10 10
The primitive is y = Cie® + Coe™™ 4 Cae ™ + xe /1

5. Solve @ ~50"+8D_gyy - e 42654 3%

Th ' ion 4
® complementary function is y = Cie® + Cpe™ Csxe®™, and o particular integral is
1

_ 2x 2
y e + x 3 -x
(D-1y(D-2)? '(D-l)(D-z}z ¢ (D-l)(D-z)"’ ¢
_ 1 1 2y 2 b
e A Uy pu S S SR
- -
(D-n° "p_q D1 p_g ) D-1D-z? *
- )3 er + 2 x 3 —x
2 ¢
D -2 D-1 (~2) (-3y?
2% 2
= e ff(dx) + 9% (e o L | 2 2x
f Ge = -z-xe hex—%e-x.
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The primitive is y = Cie* + Cpe " + Coxe™" + }xie% RPN
2 B

.

f. Establish the rule in b) above for cos(ax + b},

Since, when y = cos({ex+ b), Dzy =_a2 cos(ax + b}, D“y = (_42)2305(‘”4. B), eenvesercios,

Py = (_az)rcos(ax+b), then

F(DQ) cos(ax +b) = ZP,.szcos(ax+ by = ZP,.{-az}rcgsfax+b) = F(_az) cos(ax + b).
T r

Hence, cos{ax +b) = ! 5 cos{ax + b),

Fb% Fi-a%

T. Solve (Dz’f 43y = sin 3=x, \\\

2 AN .
The complementary function is y = Cycos 2¢ + (psin 2x, and a partigu{ai‘ﬁsolution is

1 1 ) 1 a\s
= sin 3x = ——— - 8in 3x = -~ = &1n\3x.
y ik

2 2
D7+ 4 -3y +4 ¢* ¢

1 .
The primitive is y = Cjcos Zx + Cpsin2x — - sindx,
5 w\J
2
O
8. Solve (D'+10D%+8)y = cos(2x+3), Q

LY

ol ¢

The complementary function is y = C,cos ;’4;CQsin x + Cgcos 3x + (sin 3x, and a particu-
lar integral is \ g

y = ! 'c\c;é.(ix +3) = 1 cos{2x +3) = - ~1— cos(Zx +3).
@+ HO* LB =36 15

L
¢\ ‘
The primitive is y = Cjcosa +\Cgsinx + Cgoos 3x + (usin3x - TS cos(2x +3).
O

2 N

9. Solve (D" +3D-4)y =\§1u}2x.
A O\ X x - X - - .
The comp]ementa«r‘g\function is y = e + Goe , anda particular integral is
\® 1

sin 2&x =

a \ - sin 2.
N T R ana D-1D+4)

, and the short method does not apply. However,

The operator here is not of the form

Fob
we may use either of the following procedures to shorten the work.
a) y = 1 in o = 2rB@oY oy - %(92_39_4) sin 2x
h 2
(D~13(D+4) 0 - 1)¢D° - 16)
1 .
= -1-~(—4sin2x—6c052:—431n2x) —36(4_51ﬂ21+36052x).
100
. 3D+8
b) = ! sin 2z = 1 sin Zx = sin 2x = —2_Sin2x
7 p*+ 3D -4 (-4) +3D -4 3D-8 oD - 64

| - .

1 : = —— (4 sin 2x + 3 cos 2x).
. L s 2¢ + B sin 2x)
- - Flo (3D+8) sin o 6 °° : 50

-x 1 i + 3 cos 2x).
The primitive is y = Cre” + Cot = 36(4 sin 2 + 3 ' :
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10. Solve (D°+0%+D+ )y = sin 2¢ + cos 3z.

—x .
The complementzry function is y = Cicosx + Cysinz + Cge *, and a particular integra] ig

) 1
y = ——L  (sin 2 + cos 3x) = T sink ¢ — €os I
D% +1) (D +1) O+ 1D+ 1 CIREPICESY
S L T TN LIp
3D+1 8D+1 30" -1 D71

H
it

1 1
% (D -1)sin 2z + f-3%].(.{,?-1)(:05 3x E(z cos 2x - sin 2x) - 5(3 Sin 3x + cos 3x),

The primitive is

- 1 1
¥y = Gieosx + Cysinx + Cye * 4 1—5(2 cos 2x -~ sin 2xy - 8—0(3 sin 3x + coi\'ﬁx).
z"‘} )
11, solve (D°-D+1)y = sin 2.
\\
The complementary function is y = 2 (Cicos 5V3x + Czsin 5@1 and a particular inte-
gral is N
y=—2~1—sinzx = 1 sinzx\\;—islnh = -E_—{ainh
p*-p+1 (-9)-D+1 (O D+3 Doy
O
1 1 ANV
= —(D-3)sin 2x = (2 cos 2% 3 sin 2x),
13 12 o

A3
"

N 3% \ ™
The primitive is ¥y = et (Cic08 3v3 x t:fﬁgsin V3 x) + %(2 cos 2x — 3 sin 2x).

“
3

,\\
2 2N\
12, solve (D*+4)y = cos 21 + cos 4x'\\..~‘
The complenentary functmq .IS ¥ = Cicos 2x + Cpsin 2%, and a barticular integral is
QN
¥ = (co,s\zx + cos 4x) = cos 2x 4+ -—1-— cos 4x.
D"+ a (Y D'+ 4 "
&,.
The method of t}m;. chapter cannot be used to avaluate --i-. cos 2x since, when [)2 isre-
N )

D? 4

placed by —4$\D/2;+4 = 0. However, the following procedure mey be used.

Consider

il

cos(2+ h)x —-—-1——-—...cos(2+h)x = -
D+ g —(2+h] + 4 ahy b2

cos{2+ h)x

1
= - m—— —_ 3 2 LR
h(4+h)(oszx hxstx—%(hx) COo5 2x + rrecer )
by Taylar's theorem, The first term, ¢ i

. » COS 2%, is part of the }
not be considereg here, Hence, g particular ;.ntegral is Fosplenentary function and need

1
——— COS(2+ h)x __1_._ 2
D2+4 h(4+h) {hx Sin2x+é(hx) COE 2% = vavncrevee

)

1
” h(x BIN 2t + $ha®cos 9% ~ vevnnnn... )

Letting k-0, we obtain

1
cos 2x = Zx sin 2x. Since

1
cos dx = _—- __ cos 4x,
Doy g 12

the primitive ig ¥ = Cieos 2x +

5 . Compare this solution
¥ith that given in Problep 8, Chapter 1g,) (Comp
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13. Solve (2[)2+2D+3)y = 2221,

L -ix _
The complementary function is y = e *"(Cycos 45 x + C,sin+v/5 x), and a particular in-

tegral is
_ 1 2 1 2 2
¥y 5 (Pt =l) = (= . 2D Aph? -
2D%+ 2D +3 G-’ =D
1 » 2
= 2ol - S - 2y - 1203, .5
3 g 27 3 9" 27
Note: 2_1“_ - A -2 2p7 4 .oeeiciiisy by direct division.
2" +2D+3 3 9 2
The primitive is y = %(Cicos'z—/s_x + Co8in 55 x} + 12, Ex -
3 9 \2
14, Solve ()’ -2D+4)y = x +3z° -5z +2 O

The complementary fuaction is y = Cle"zx + ex(Cgcosx f:i}‘,\ixi xz), and & particular in-
\N

tegral is A
y = L e s+ = (—- + —D A W07 L 1L Ephat et
D _op+g s 32 64
\\
1 1 32 5 1 %
= 22 Tp SRl 2y (N
4 2 4 B “’3‘
- N 1 1 32 5 7
The primitive is y = Cie g (chosx + Cysinx) + Zx“+ §x5 + Ex - ;x e

\\
15. solve (D°-2D”+3D)y = x .\\

% . .
The complementary .fmmn is y=Ci + Czex + 6383 , and a particular integral is

&
y o= —%;‘1‘2——12 ="“-1'{2 LR %(%+§D+E«D)
DD -4D+3) D p*_4p+3
S 26 1
\5_:"',1_ 174 8., 2 .15, 4.2, 2., since JI—}{f(::)} = [ fx)da.
D3 27 9 9 27
x & 1.3 4 2 %
The primitive is y = Cy + Co¢ + Cae™ ¥ 5° * 5" t R

2 .
16. Sclve (Du+ 2D5—3D2)y = x2+3e *+4q sinx.

Cy + Cox + Cagx + C4e-3x’ and a particular integral is

The complementary function is ¥ =

y = _._--—I-'-—-—"'(x2+382x+4 sinx)
p2(*+2D-3)
1 2% 1 .
1 z 3———-—'-—"—"6 + 4 ] sin x
. A
i D2(02+2D—3)x i Dz(D2+2D—3) DD +2D-3)
3 2% 4 .
1 1 z + — + 51n x
i BE{D2+2D_3x} 4{4+4-3) (-13(-1+2D-3)
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2
L {- 1_ ED - lD2)12 + iezx - —— Sinzx
2 3 9 27 20 D-2
= ——l—(Qx +12x +14) + -?leZJC - 2D+2 sin x
21 b 20 D?-4
= ——1(3“ 20+ %) 4 37y E(cosz+2sinx).
27 4 20 5

The primitive is

2
y = G+ Cox + Cgex + C,e-ax - -{—-(33:21- 8x + 28) + _322:: + E((:o.t; T+ 2 ningxy,
108 20 5

1%. Establish the rule in d) above by first showing that F(De™ U - mn m;z\

v Dy = ae™U v DU - & (D+0)U ‘\ “
2
D% = aea‘x(D+a)U+ eaxD(D+a)U = Eax{D2+ 2aD+a W= (D+a\z‘f Trreta e
Dy = ¢ ®+ayU, and \~
. ax - ’
1 Fiye U = %PTD (eaxU) = %P,reax{D+a}rU = ¢ %Pr (Ifl a) i = emf"(ll INTSTIR
PoN\Y

Let V = FD+a)li so that U - L V. Thén{"
Fore \\ en, from 1y,

Since when y = ¢*U )

F(D)eax ! V = eﬂ'-xv and 1 axV _:: { 1 i i .
B — {F(D)e™* =oe . £
FD+a) Fy &Y Fy FD v ay } Febea)

18, soive (D2—4)y = x2e3%, &x\\

The . N 2x -
he complementary function 1'5“:3- = Cre™ + Qe 2x, and 2 particular integral is

1 2
NS x
b -4 D+3)°- ¢ D+ 6D+ s

b
]
I -
»
i
£
Ny
]|
Ly
=5
—
L5
o
"

4
= et - Zp oy 25 = KX 12 62
SV Tt s S -m

2% -
+ o™ 4 ——€5x(25x2-601+62).

19 solve D%+ 2b3ayy < o gy 2%

The complementary r ion i —x
¥ function is y = . €icos vTx + Cpsin ¥3 x)

g » and a particular integral
1 %

Yy = € 8in 2z = ,° 1

2 -1 : x

D%+ 3D +4 Dy s - . i

D+ + 2D+ 1)+ 4 D2+4D+751n2x
x
= € ——_35in2; - exﬂis e
in2xy = -2 . : [
4D 160% g 73(‘1‘0 3ysin2 - - 51—3(8 cos 2x — 3sin 2x).

The primitive is = & x
¥ = ¢ (Cicosv3x+c i ¢

25in v3xy o & 8 — ;

73( CoS 2r - 3 sin 24),
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90. Solve (D°~aD+dyy = 2™ 4 3¢* cos 2x.

i 5 x*
The complementary function is ¥y =Ce + Cgeax, and a particular integral is

1
yo= IR (2xe5x + 3837 cos &) = 2 - 1 xeax + 3 ——---——--1 ex cos 2x
D" -4D+3 D" -4D+3 D _ap+3
1
- 2% X + 3" 21 cos ¢ = 2% E.—.-_I x + 35 1 cos 2x
D™+ 2D D" ~2b D D+2 ~4 - 2D
ix 1.1 3 x D-2 1 1
= 2e (___D - = = L w1l 3 x5
D2 }x 3¢ o4 €o8 2x 2"3 D{?nx D o+ 16 e (D-2)cos 2x
s <\
1 3 .
=z 5x(x‘z—x} - - ex(cos 2 + sin 2x), A \\
2 8 SO\
1 O )
The primitive is y = Ciex+ Cgeix + 2 (x -x) - Ee (coszx + sin Px).
Ko\

91, Establish the rule -in e) above hy first showing that \F(D)xU = xF(DHU + F'DHU.
\ v
Since when y = xU, Dy=xDU+U Dy-xQU+2DU ----- snerreonna .
Dry = 2BV + D™ = DU+ (— "y, them

1 Pl = gpro"(w) - ZPxDU & zp (—D)U = FHU + FI (DU,

""
N

Let ¥ = F(YU so that U = @W Then, substituting in 1),

’\
1 AN : 1
-_.-—J/ FB--—V V = Fiyx — F(D)—V
Fihyx Foby 4 xF(D) FU}} v F{h 5y x F(D) Fa
!

1 \ 1 1 _ 1 Foy

and V = x - V——-—F(D)-——V—x - —
FD) g@) Foy T FD F T FovP
O

22. solve (Qf\kﬁbﬁrzw = x sin 2x.

4 - —-2x e .
The comﬁlementar}' funection is y = Cie  + Goe T, and a particular integral is

2D + 3

1 A _ gin 2x - —————— 5in 2x
¥y = e —zxsin2r = x 2 2
p°¢3D+2 D*+3D+2 D" +3D+2)
= x gin 2x - 2D+:; sin 2
3D -2 prel’ +13D°+12D+4
. { 2 - 2D +3 sin 2¢x, replacing »° by -4,
T Tapoz (-4)° + B(-0)D + 13(-4) +12D+ 4
a+3ED-8) _.
LB, EDEDEPD g
oD% — 4 4 op°-64

-x(3 cos 2x + sin 2x) o4 gin 2x + 7 cos )

- 70 200
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- -2 30x -7 5x ~ 12
The primitive is y = Cye * 4 Cqe * cos 2x -

sin 2x,

23. solve (Dz—l)y = x° sin 3z.

The complementary function is y = Cge™ + Ce”™, and a particular integral js

Y = 21 2 sin 3x = x > x si1n 3x -~ 22D 2:31113.:
D" -1 D -1 0 -n
3
= A sindr - x — sin 3z ~ 2D {x — ;= sindx - —#)-;i‘?——sinfix}
D*-1 D" - 1% D*.2p%4 0207 1y’
o &\
2
2 .
= x 8in3x - & P sindx - 2D {«x $in3x } +':“.\8ﬁ) sin 3y
Dot D -1 D7 - 1y? RN DT

o

\J

Nos/
L 3
S
i

1 a2 3 1 9
T T 3% Blndr ~ —~ xcos3x - — D(xsin3 —_— ’
10 50 50 (x &1n3x) + 125 sin}g\

> s“}
1 2 )
= e -y sm3x-—§-xcos3x+-£3-sin3x. O
10 25 250 K7,
RS

2 A\
a2 . n - - \
The primitive is y = Cie” + Coe™™ - M~sin 3 - S X cos 3x .
50 25
") v

24. solve {D5—3D2-—GD+3)), = xe™¥, N
LN\
The compl t i § \2 x 4x 2x
pletentary function is y(3Cie* + Cpe** 4 Cae™™", and 2 particular integral is
N .
..:Pé = 3 2 xe—jxc
P, D'-3D" —6D+g
-3 ‘{\
Bya): Y = & T 1 _ —ix 1
= . x

\"Z *
~.\\\D_3}5 ~3(0-3) —6(D-3)+ 5

\
ay

D’ -120% ¢ 39p _ 29

VW%, 10 39
,..‘_“;e (_ — _._D)x = —3x - —]; - 39
O 28 784 A e i
By ey y o ; R A 1 &% 3D -6D-6 ~3x
2
‘ D’ 30" _gD+ g (95_31)2_59+3)2
2
= _Eéxe-ix . AD"-eD-¢ - 1 ce3% 38 o3
= — — e — —
(-282 28 784 '
-3y

&
- ——{(28x+3
’784( 9.



SHORT METHODS

SUPPLEMENTARY PROBLEMS

Find a particular integral.

25.
26.
27
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

44.

(D% & 2y = ™

B+ D+ Ly = €”
B -y = €°

(D - 2)2y = e¥ ; ze™*
(¥ -~ )y = sin %
(D3 + 1)y = cos x
P? + 4)y = sin 2x
(D2 + B)y = cos v5 x

D+ D2+ D+ iy=e+e¥+sinx

0* - 1y = £

P — 1y =17

PR !
LW
X

st‘\&
D sy =2 45 s + cos 33"
AN\
2 p \’\
D°-20~y=e cosx ()
L\
2 2%, 2 \
D-2yy=e /x
2\
(Dz - 1)_‘)’ = xesx :;\i‘j
x"\ W
(»D2 +5D + s}yoé\é’zx(seczx)(l + 2tanx)
‘3&\
O

Ans.

y =e%/8
y=e/3
¥ = xex/2 a
y=e+ xaezx/e
1 o &\
Y5 sin 2% \\
:'\ v
i "w\)
¥y = ={coS x -:.s\'in x
R
y=-3% 08'2x.

0‘{'
¥ ;§> s5in vh x
N

S Le® 4 axe™ - 1 (sinx + cosx)
R 1

‘:\ 2

%
&l ¢
N

- 2

- X

1 6 ¥
—ﬁ(x + 30x )

y:
o 1
y = %(x5'+x2_3x-1) + -é-e 2x—ﬁcosmr
1 x
= - - COoS X
hd 36
y:-—-elenx
1 3x
= — -3
y=gpe W=

y=e—2x tan x

YT
o)

107
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CHAPTER 17

Linear Equations with Variable Coefficients
THE CAUCHY AND LEGENDRE LINFAR EQUATIONS

THE CAUCHY LINEAR EQUATION

L N1
1) px”ﬂ+pxﬂ-1 u{- ..... +pﬂ_1x9'3_’+3‘}, . O(x).
Y dx
in which p ,p,,» v+ » b, are constants, and the Legendre Jgnc@x equat fon

3 LD '::'dy
2) »p (ax +b) 2 + p, (ax + b)"~* L NTRRR Pﬂ-,f&’{“ﬁb%— topoy oo Qx),
dxﬂ C‘b(ﬂ-" \ o/ dx
of which 1) is the special cage (a=1, b=0), m h; reduced to linear equa-

tions with constant coefficients by properly .chosen transformations of the
independent variable.

\/
THE CAUCHY LINEAR EQUATION. Let x = &7, thed(If  is defined by 8 = (Tf ,
\J dz
by - B bd 1 N
d dz dx x dz a1 xby = = = By,
2. d Idy _ 1 dzy dy “ N
by = Br;(; E.;) = _2‘(3"5 - ‘EE{\\ and xzbzy = 0(8-1)y,
» ."\:\.‘{‘
Py-- 2@y _dr By dYy
X3 dz? dz N3 d | dp?
N
3 2 )
= _1_ P.'_Jf dy dy 3
P far T wm AUy se-ns-2,
QO
:\. :’ M LI R
™ XDy = BB -1)(H2)-.--- (§-r+1Dy.

After making these Teplacements, 1} becomes

{2, 99 -1) -2y (B=py +1) + plu(s_l)w__z),___w_mm .

- . +pﬂ-1s+pﬂ}y: Q(E)'
a linear equation with constant coefficients,
See Problems 1-3.

THE LEGENDRE LINEAR EQUATION. Let ax+p = e®; then

Dy = &¥dz | _a o

dz & axtb dg and (ax +b)Dy = ag! = aly,
Z
4
Dy = __2 (u__dy._ﬁ 2 2
(ax+b)? dp ) A (ax+5)' Dy = 2*0(8-1yy,

108



1. Solve (xD°+ 3°D° - 2D + 2y =0,

2. Solve (2D +2D-2)y = x° Inx + 3x. \¢

¥

3. Solve (<D’ -xD+d)y =

is

THE CAUCHY AND LEGENDRE LINEAR EQUATIONS

109
(ax +b) D'y = T BO 1)+ - (B—r +1)y.
After making these replacements, 2) becomes
{p,a™ D -1} (B =2)rveeBontl) + pa™ " BB _1)(H=2)rr--(Bon t2) + sevrrrn
=2
+ pﬂuiaﬂ + pﬂ}y = Q(e _.b)’

a linear equation with constant coefficients,

The transformation x =

See Problems 4-5.

SOLVED PROBLEMS

i:‘: )
¢ reduces the equation to '\'\".
{80-1)(B-2 + 30B-1 - W+ 2ty - B30+ 2y -0
O

. . R4
whose scolution is y = (e

Z -2z
+ Coze® + Cye

. AN
Since z =lnx, the complete soluticn of the gimry‘aﬁuation is y = Cyx + Cox Inx + Cs/xz.

The transformation x =

A\
NS,
\/

N - AV

-

¢” reduces tl'{eg:é:cfi]&tiﬂn to e
D®-1@-2) + 20 2}y -

The eomplementary function 15'\3; Ciez + € (Cpcos z + Cesin 2), and a particular
N\

2z =
ze  + Be .,

-1 @ -Weyy =

integral is

S (2e7%+ 3¢5 = e 1 z + 3 ; &
o3k iafio2 AN @+ 3@+ vaden -2 B-1y ¢ =20+ 2)
x;\.s.:
\ij’ = eZz ! z + 3—-1— &
O Wraf +ab+z (O-1(0
\”\~\ ) = 322(12- - B}z + 3ezjez-e“z dz = ezz{Jz'z - 1) ¢+ 3132.
' 4

Thus, the sclution is ¥

The transformation x =

(BB-1 -B+4aly = §°-20+dy =

- i 3
The complementary function is y = ¢ (Gicos V32 + Gpsinv3z),

y =
5}2-21%4

3-28

=
-1

Ccos5 z

=z
cosz f o€

Z, =
= Clez + €2 (Cycos z + Cgsinz) + fe 2z -2) + Bzé

2
Cyx + x{Cycos Inx + Gesin Inx) + tx (Inx -2) + 3x lnx,

cos lnx + x sin 1n x.

reduces the equation to

Z
cosz + e sinz.

and a particular solution

e sin z N

PLES T

+

B o2h+4

sin z i(3 cosz—2sinz)+1ezsinz.
13 . 2

2
§a+3
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Thus, the solution is

1 1 =
ez(cicos V3z + Cpsinv31z) + E(B cosz — 2sinz) + Ee sin z

t
W

1 1 )
x(Crcos V3-1Inx + Cosin ¥3-Inx) + E(S cos Inx — 2sin lngx) + 3% sin Inx,

H

4, Solve (x+2 —y - (x+2)l+ y = B¢+ 4,

&

Put x+2=e°; then the given equation becomes
2
{(BB-1 -0+ 1ty = ®-p°y = 3°-2,
'\
The complementary function is ¥ = C1ez + ngez. and a particular int.eEral is

Yy = 2(382—2) = 3% ff(dZ)z - 2 1 . &% =zt g; & -2,
(B" I) (S' - l) ,\:‘;
\\ :
: N 2 -4 3 2z
The solution is y = Cye” + Cpze® + 52€ - 2 or, sin\se‘ = Inf{x + 2},

Y = (x+2)[Cy+ CypIn(x+2) + g,u{\csﬁz)] -2,
N

5o Solve {(3x+2)°D"+ 33+ 2D - 36}y = lel\as 4 1,

R

The transformation 3x+2:=¢ reducessnithe equation to

2 p
(988-1+ 00-36)y = o(f- ayy SCLATRD %cez”d) or (K -4y - 2—1.,(.9"“’—1).

%

The complete solution is jn = Cye + Ce® , 1L, _ 1 2z _ 1 2y
2 g o4
\<& -4 -4
K ’{‘\w - 61823 + 628-22 + _i_(zeZZ £ 1)
) 108
,\\“' :
K . 2 -
\or Y = G+ ¢ Ga+)? 4 —L{(3x+2)2 In(3x +2) + 1].
A 108
N/ SUPPLEMENTARY PROBLEMS
Solve,

-
6. xzDz_g - 2
{ D+d)y =x + 2% 1ny Ans, y = Cx" +C2x nz + x ‘_lx lnjx
6

T D - 2Dy - 1P - 1 42
5 VY Dx~1nx Ans, y < Cyx + Cax2 + %(lnzx +1n x) + %

8. 0%+ 2Py - i
¥ = x + sin(la x) =
Ans, y =, tCx+ Colnx + x Inx

. x}ym+ o . \ * Z2(cos 1n x + sin 1n x)

. -Y = 3

Ans, y = Cix + Cox Ing + Csx lnzx + xu/9

2
10, [¢x+1)%D% & F+DD - 1ly = Inee1y? y 5 g

Ans. y = C,(x +1) + Cp(x 4 1)1

1. (2x+1) ¥ 2(2x 41 -
-2y = sy =Gy 4 ¢ (o +1)° < 3u/8 + 1/16

- 1n(:::+1)2 + H(x + 1)-1n(x + 1342



CHAPTER 18

Linear Equations with Variable Coefficients
EQUATIONS OF THE. SECOND ORDER

A LINEAR DIFFERENTIAL EQUATION of the second order has the form

1) Ly k@ 4 sy = 000
dx? icx".w: y = '
O
If the coefficients R and S are constants, the equation gan be solved by
the methods of the preceding chapter; otherwise, no generai method is known.
In this chapter certain procedures are given which at tlmes will yield a so-

lution, \\ \

CHANGE OF DEPENDENT VARIABLE. Under the transformatien.
y =uv, u=u(x) and:'\‘v& v(x),

2 2
Q = U'd—v + Vd'-—u ] E‘I—y 'i \t;-*-- + 2dV du + V-d-—u »
dx dx cx dx* .’ x? dx dx x?
1) becomes n’fi’
d?v =
2) — t Ry 6@ — + Six)v =
dx? \
. d 1,d% du wy — QC(x)
With By(x) = %E{" v R(x), S, (x) = ;{; R £+ Sy, 0 = S

’\‘.

2
d _ -
a) Ifuis a parﬁcnlar integral of d_x-z}{ + Rx)== + Sx)y =0, then S, =0

Sl

and 2) bgggmgas
)" d’v E‘LV x),
3) \’ — + Ryx) pred 01{x)

dp
= reduces 3) to
elx

i

VORI ‘S d’v
The further substitution & S

4) g.z + Ryx)p = Qulx),

a linear -equation of the first order. See Problems 1-6.

+R(x) =0 or i‘;i‘ = - 3R(x) dx, then .

£ i
S2ky

b} If u is chosen so that Ri(x) =

-4 fR(x)yix

111



112 LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS

. d’s _ g du 4y R o that
Now ¥ - -suRx) and ") = “2R(x) = it
E du ldzu_ LR(X) _Ci*'_l“ L= = 5 . 'RQ_. |@
S.x) = Sx) + % pr + il St 3 a  dx ¢ dx P ? 5
and Q, = Q/u. .
R2- 1 & _ 4, aconstant, 2) becomes LY+ av = g
If Si(x) = 8 - LR° -~ ) "& = ] ? (!x2 ]

a linear equation with constant coefficients.
2 2 dv 2 Cauchy  cquati
If S;(x}) = 4/x, 2) becomes x° — + dv = Qx'/u, a Cauchy equation,
c&?

. o &\
and the substitution x = e® will reduce it to one with conspgm\ coctficients,
ime?}é Problems 7-10.

CHANGE OF INDEPENDENT VARIABLE. Let the transformation be\} 2 9(x). Then

dy _ dydz d__z,,zd,,(dm+dydz
cx dz dx ' 2 d, oz che?
and 1) becomes \ 2\
g2 2
dz? dx dx"
or o -
d? i—{\fg; dy
5) 2y &, Sy _ 0 .
W gy & g T e
..:,,.‘ dx dx ox
'\.1

{ \
Let = = G(x)\b‘e‘ ‘chosen so that <2 dz }3.:3 . the sign being that which makes
a

= realj.lzltl:ﬂ being any positive constant, (One may consistently take a’ = 1.)

\;22 + R dz
ot dx
If now S = 4, a constant, then 5) becomes d——y + Ady t a’y = ¢,
(dzy? dz? dz dzy2
dx (dx)

a linear equation with constant coefficients. Sce Problems 11-14.

OPERATIONAL FACTORING. It may be possible to Separate the left member of

{P(x)D? + R(x)D + S(x)}y = 2(x)
inte two linear operators F, (D) and Fa(DY so that

8 {F,(D)-F,(D)}y = Fo (DY {F D)y} = {P()D? + R)D + S(x)ly = Q(x).
Then, setting Fa(D)y = v,

order one, 6) becomes F, (Dyv = o(x), a linear equation of
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Tl}zlfactorizg.tion in this section differs from that of Chapter 13. With
possible exceptions, the factors here contain the independent variable x,

they are not commutative, and the factorizati i i
treated as a variable, For example, shion differs from that when D is

{xD® = (x*+2)D + x}y = {(xD~2)(D ~x)}y,

since
{(xD-2)(D-x)}y = (xD _2)(§ ~x)y = (xD-2)(¥'—xy)

_ d .

= fx& =2)(y'-xy) = x(y"y -xy’) - 2{(y'-x¥)

= Xy (X + Dy txy = {(xD = (xXZ+ DD +x}y.
The factors are not commutative, since "

AN\
{D-x)(xD -}y = (D-x)(x'~2y) = xy"+y' -2y —xP'+ 2y

- Dy 42y = (DR 1D + 2}y
Finally, when D is treated as a variable rather than Kﬁ‘:‘qperator,
{(xD~2Y(D-x)}y = {xbp- (x2+2)D’+2x}y. \\ See Problems 15-17.

IN SUMMARY, the following procedure is suggested 'fp}“éulving
d%y dy e Y _ _
;;—_2 + R(X)&; + S(x)y = @{x).

N
ol

1) Find by inspection, or otherwig.é,"a particular - integral u = u(x) of the
equation when Q(x) = 0. Thessubstitution y = uv will yield a linear equa-
tion in which the dependenf, variable v does not appear. This equation is
of the first order in dx(@x = p,

: X : ' R .
2) If a particular inte&ral cannot be found, compute S - %R”- 5= TIf this
N\ W/

£ ) . N ~ifRa .
is a constant K7or K/x%, the transformation y = ve 2/ R ax reduces the given
equation to \{,,l‘inear equation with constant coefficients or to a Cauchy

RO

equation. A

dz 8 . .
3) If th{«&'h\eve procedure does not apply, put —- = 22 (choosing the sign
4
2
d’z | pdz
2 ox
so that the square root is real) and substitute in ——-—-—dz — - If this
=)
dx

) R . .
is a constant, the transformation z = ffa—,- dx yields a linear equation

with constant coefficients.

quation is operationally factorable, the prob-

4) If the left member of the e e ore linear equations of order one.

lem is then reduced to that of solvi

work, it is desirable to know the type of equa-

Note. ; k on the -
ote. As a partial chec formations in 1)-8) are made.

tion which results when the trans



1i4

1.

24

SOLVED PROBLEMS

2
For the equation (D +BD+3)y = 0, show that

x is a particular integral if R+xS = 0,

LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS

a) y =
by y = e~ is a particular integral if 1+R+S =
¢) y = &7 is a particular integral if 1-R+S =
d) y = ¢™ is a particular integral if a’+mR+S =
a) If y = x is a particular integral of (D 24 RD+8)y = 0 then, since Dy =1 and D’y:0, R+Suzn,
d) If y = ™ is a particular integral of (D +RD+8)y = 0 then, since Dy = my and n y = nly,

(n?+ mR+S)y =0 and m2+mR+S =0, b) and ¢) are special cases (m = 1, m = -1) of d),

o <\
Solve (D° - ‘%D + %)y = 2x-1. R A\
x PR A
Here R+35x = 0 and y = x is a particular integral of (D - —D + -i{:}}y =0,
P N
dv d% dv ."\\
The transformation y =xv, Dy = xa + v, 3 y=ax—g+ 2— r‘e\dnces the given equation to
dx )

d 2 \J 2
x——..E 2@_3@_Ey+§v :xﬂ—@:h 1 ;x::’\or d_v‘_l(;igzz__l‘

dx? elx de x x a2  dx \\\ dx? x dx E

2
dy dv . A _
Putting & = p, Ex_z = %- this becomes % -»-‘L = 2 --l for which eI d/x I/x 1is an
X
integrating factor. Then N
2 1 K\ )
f(;~—2)dx=2%nx\-+K, p:@: 2 lnzx + 1+ Kx,
% ¢ J dx

_ Y
vo=T f(zx inx + 1+ Kx)dx! =: P lnzezxs C,_x +Cz, and = Cyx’ + Cox + X Inx + 2%,
s\.
{ \’
Solve x2 (x+i} d’y \x(2+4x+x)—- +(2+dr+xP)y = —x o 9
. g 2 2
Here, +‘;S'x = _FQH4x+xT) + g 2fAx4x
=0 and vy = i 1 of
K, xz(x+1) x2(x A, ¥ = x 1s a particular integra
the equation with its right member replaced by zero.
The transformation ¥ = xu dy _ dzy d v dv
T T X — + oy, L —— —_ i i
2 x " + 2 = reduces the given equation
dv d:
to *{x +1) (x— av, _ 2 dv
( dxz‘f‘zdx) Z(2+4dx + x ){x£+u)+ (2""43"‘12)1‘0 - —I“— 2’:3
2
or d_g _ o x12dv x+2
dx?  x+1lde I
. dv
Putting — = p, this becomes %P X +2 x+2 =J(1+ ——yax -
“dx S dxhx+1p=_;_-f for which ef( x+1} £ . is an
integrating factor. Then e
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—x -
e {x+ e . e d
= - e = £ v x
x+1p (x + 1) dx ) x+1+Cs.. P=— = 1 + Cy(x+1)e,
v o= Z = x+C * + 2 x 2
x wxe” + Gy, and y =Cxe + Cox + 1,
d’ d
4. Solve x A0 A (2x+1}—y + (x+Dy = (3:2+x-1)32x.
2 dx
dx
2 +1 x+1 % . . i
Here 1+R+S=1-="—=+"—-=0 and y = ¢ is a particular integral of the equation
with its right member replaced by zera.
2 2 6. &\
The transformation y = e v, :i = x(% + vy, d_z = ex(d_z + 29!1:'. +\\v) reduces the
dx dx £ s..x.
S
given equation to d—z _1 c_lz = (x+1- l}ex. A\ )
dx X dx x t,\\ \
. dv . dp 1 1 % MYy .. 1. . .
Putting = = p, this becomes T = {x+1 - —)e for’ which s is an integrating factor.
Then ,\
x x ‘&Y di
P o_ x  Xe —& - \\ =% ke e+ Kx,
x f(e ¥ L2 ekx t\\&:' b= &
\\ 2
T A T +Cg,\‘a.nd y = Cxle’ + et + xe™
ex .}w
&

. Solve (x—2)d—y - (4 - 7)-— \\(4x 8y = 0.
dx?

.~:

N .
Here m° +mR+S = m?\;)m/‘}x 7 4 -% -6, 0 when m=2,and y = e?* is a particular integral,

o, X - 2 x—-2
\{\ 2x d dzy 2x dv 2x du 2,
2 d v 2 ——— = x — — + 4
The transfoi'mfi\mn y=e o, Ey = e + % v, X € I tde &
reduces th\\given equation to
' 4
2
2 dv = é—.’i - _...1_ @ = {,
(x - 2){— + 4 j_: s ) - (ar-T( W) ¢ Wm0V S0 0T T Ty
dx?
1 -
Putting g;-" = p, this becomes %’ - —p =0 Then
: 2% 2 2%
d =4 s —22+C,and y = Cee  (x-2) + Cae .
p = EU - Kx-2), v = Ci(x -2 2
e
d” d
6. Solve =Y _ 2tanx—y + 3y = 2secx.
dxz dx

2
By tion, it is seen that y = sin x is a particular integral of (D ~2tanz D+ 3)y=0.
inspection,

The transformetion y = v sinx reduces the given equation to



116 LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS

& sin’x, dv d___zv + 2(cot x - tan x)d—v 4 cse 2
. v - & - gsecx, or - = x.
510 x o2 ¥ Hcosx cO0S x)d‘.x 2

The substitution 2 = p reduces this to 5;‘3 + 2(cot x ~ tanx)p = 4 ¢sc 2x  for which an
dx

. 2
integrating factor is jisin” 2x.  Then

' dv . z
4p sin’2x = [sin2r dx = - fcosx + 4Ky, P = prollie ~2csc2x cot Zx + Kyosco 2y,
vo= sii 7 - °os¢ 2 + Keot2x + G, and y =% secx + Cy(cosx — } secx) + (,singx,
'\
7osolve 3F 2% 4 2y o N N
di? x dx 2 e
Oy rrax does
Here R:..g, S=1+i. S—ﬁﬂz-%d—ﬁ.:l and l‘l;:‘?ﬁr !‘-r o = X,
X 2 dx N
ON
2 £ 3
The transformation ¥ = uv = av, d_y = x é’. + v, é_.y =1 :’E + 2 @ reduces Lhe given
dx dx 2 dy?
i PRY,
equation to — + v = ex, alinear equation with cofistant coefficients, whose complete solu-
o
dx \\\\:
tion is v = % = Cigosx + Cysinx + --;-1“7‘:‘5‘” = Cycosx + Cysinx + faet_
P
Thas, ¥y = Cixcosx + Cox sing +}';L};c§x.
.\\
4 '8
d & 2 e 2NJ L, 2
& Sal ey _ ay 3(x" + 2x)

ve = 2xdx+(x +2)y¥e .

X/ , 2
Here R = -2, Sf{'{.’rZ. S~ iR _,i,%:s. and u = g'fﬂdx = e{,x

AN\ L2
The transfm:;nat}on ¥y = ei

SN

tion s \Jy = y/e§x2 =

o 2
v reduces the equation to d—: + 30 = ¢ whose complete solu-

; 1
Crcos V82 + Cosin vTx + —2-—-€x = C105v3x + Cpsinv3x + e’
D+
Thus L Iixz % 2
* ¥ e (Cieos VB x4 Gosin VT x) + g2 ¥ F2%)

z 3 3
9. solve (p% - ;D + ;—;)y = 2 -1, (Problem 2,)

Rere S-_4p%._ 490 _ 3 9 3 3 - : 2
B 2 i i Ty ad owe JHRE L dfoadx B

T . 2
he transformation Y= ur o= x5/ v reduces the equation to

dv 3 2 -1 2
—_ - ——y s 71 2 d'y 3
2 z or — 2. . a3/ 1/2
dx 4x 15/2 * dx? 4” = X -x/ » & Cauchy equation,
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Putting x = ez, we have (@2 -5 - g)v - 2632/2 __ ez/z

The complementary function is v = Cie—z/z . C2e32/2, and a particular integral is

1 52/2 2/2 1 =/ .
P = (2 -’y = 853 2 + 8‘2/2 _ s 3z/2 + 2/2
B -H-3/4 §-372 € €
The complete solution is v = y/x? = Clx'l/z s 7 e P g s

and ¥ Cox + Cox” + 20 Inx + x°,

2
10. solve dy _ 4x dy + 4x2y - xexz.
dx? dx

2 3
fore st -+ Py w wa 2L
dx O
2 2 .
The transformation y = ve® reduces the equation to 2 «\\szx whose complete solu-
tion is \\
v o= C,_ccus ¥3x + Casinv2zx + %x. v/
\, 2
Then y = ve® = (Cicos vZxz + C251n\/§£) + Exe .
O
O
2 : AN
2 (N
11. solve 4y . (1+ 48x)dl + Bezxy = 8,35\8 ),
dx? dx N\
N\ 2 2 4 % %
\} dz/dx” + R{dzfdx) _ e =~ (1+ d4e)e”
When g , s = 2 4= A.
(dz/dx} (™)
The introduction of z & e as new independemt variable leads to
.\./ x
4 2 2(x +2} x
2 e d d 2 2
d—y+Ady\§Pa2y= e —Z—é—y+3y=—-—7~——e = g
dz? «&' (dz/dx) dz e
~.,\ z 3z 1 2z c ez + C285z ezz
whose compl té solution is = Cye” + Che™” + e = - .
\'\.’ 4 B -4B+3
4
& g 2"
Replacing z by e", we have y = Cie + Coe” ~ e
2 dz /3 e -4
i i =1, — =v3e and A = ~—
Note. The choice of o? = 3 is ome of convenjence only. Taking a =1 = e ,/g
2 N . .
dy 4 dy . 123 Gnose solution is
% —— = —¢
The transformation z =v3 e ¥ 52 73 @ 3
e 3¢ _ 2 before
Yy = Clez/"? + C.zevrg £ _ 822’//3- Then ¥y = Cie  + Cye - ¢ » a5 be .
d° d 2 ' 3.
12, Solve _-l_cotxa.i:_sj_nxy = cosx -~ €05 X,
2

dx

5 ¢12z./ct'.:2 +R(dz/dx) _ cosx+ (—cotxfsinx)
...1. = sinx, =

dz
flere § - —sin’x and when —= = (dz/dx)z sin’x

dx
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Thus the intreduction of z = —cos x &s new independent variable leads te
2
d_y - y = cos x = -z whose complete solution is y = Cxez + Cpe . z.
dz?
—£OS X . COSx
Upon replacing z by —cos x, w%e have y = Cje t Cae - COSx,
2 2
18. solve Ef__y+gd_y+_}_y . E L
di® x dt x x
2 2
dz 1 1 d d
When % = V3 = f_“' == 2/ds_ + H(zz/dx) = 0, Thus the introduction of 2= _l
- (dz/dx) x
dz
as new independent variable leads to E-—Z +y = 2 + 2% whose Coml)l(?l\b\\.iulufitm is
2 A
y = Cieosz + Ksinz + z2 R
®)
Upon replacing z by -1/x, we have ¥y = Cycos{-1/x) + K "““k k/x) + l/x
= Cycos{l/x) + ngﬁ(llx) vl
2 . O
d 1 d e 0.\
14. soive —321+( --*)—y+4xzy-3xex, ..b
\S
Va \
] 2 R ’
When— = V8 - VA = o, G/ e RUdr/dn) | 2+ (4x - a2 , _
RS = Py = 2, Thus the in-
Rl (2x)
troducti = 52 ; N 2 -
uction of z = x2 as new 1ndepgx@m\ variable leads to ‘.i..% N 25} by =3 hose con-
¢ '\\.:’ dz z 4v7
plete solution is = C,e?\ -2 34 .z _ap - iy P
4 %ﬁ:~~+ Caze ™ 4 — = Gt o+ Coze  + P
P\ % (D+1y
2 b4

Upon replacing zsbax(i}z, we have y = Cie'xz
’\\w
'\
15. solve @ -QD + --}y = -1
x

OV’

a. The eguation is equivalent ¢ 2 3
o Dy - = = 3
b D(x Yy = D - =y

+ Cexzeﬂx + xe .
(Prablem 2,)

= 2x - 1.

s 3
Priting (D-—-)y=v, We have Dv = 22 -1 ang g = 42 +K
= - X N

NOW (D - ‘-)y = x -X+ K f Whlch =— 18 4n int
or e Iatl t ihen
-1 g ng fac Or.,

1
f(———-+-—)dx = lnx+1.G
Tox2 3 x x2+C2 and Yy = Cx +C915+x2(1+xlnx).

b. The equation (xp? _ 3 2
(x 3D + DY A& -x is equivalent to (p - E) D
x

Putting (xD—l)y =v, We have (p — E)y -
x

- l}y = 2x2—Xa

2 . 1
x for which 5 1s an integrating factor.
X

Then f 2 __1
= — = l
(x xz)dx 2lnx + it K and
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- = - 5 2 .
Gh-Dy = v = 2 a2 vk’ ot D-yryy - 2% 1ok 4 2 + K,
Here 1/x is an integrating factor so that

= _ .2 2
/% Jox mx + 1+ Kydx = x Inx - x +x+K1x2+ C, = lenx+x+Clx2+Cg

and y = Cixi+czx+12(1+xlnx).

16. solve [xD® + (1-x)D - 201 o))y = e (1 ~82).
The equation is equivalent to. [xD + (t+)]1p - 2y = ehx(I—Sx).
Putting (D-2)y = v, we have [xD+1+x]v = e ¥(1-6x) or D+ 1, Ny = e"x(l ~ 8).
x %

Now xe” is an integrating factor so that vwe™ = f(l-ﬁx)dx = x - 3&\ K
and D~y = v = (1- 3x)e * i Ke /. "
Here e~2* is an integrating factor so that J

yeuF = [[(1-%)e 3+ Ke™>%/xldx = xe~ + c&% dx + Cg

and y = xe* + Ciezx -e—--—- dr + Cge .
K \ f
SO

1%. solve [(x+3)D2 —(2Z+DD + 2y = (x+3)2€x- \\

The equation may be written as {(x+3}i} - 1] D-2ly = @ +3)zex.
Putting (D -2)y = », we have ([(x +Q}D l}v (x+3) & or D - les)v = (x+3)ex.

Using the integrating factor Quws), we have o/(x+3) = fJe"dr = ¢+ K
s0 that DDy = v - (x+3)e” + K(x+3).

Using the integrating, f@ctor e-2x' we have
. - -x 1 -2x 7 --2x
ye~ f[(sr\+3)e + Kix +3)e” ] = —xe - de + K(- 3%~ g° ) + Cg

and ”'\ ¥y = - xe¥ - 4" +Ci(2x+'?)+02e .

18. Show that the Ricceti equation gf + yP(x) + y'Q(x) = R(x), Qx) # 0, is reduced toa

I du
linear equation of the second order by the substitution y =m0 70~
gince B _ 1 dw 1 deo 1 dOdi - phg sunstitution yields
Ou gx? Qu2 dx Qzu dx dx
2
1 dQ,
1da 1 gz 1 @@+£@+L(g)2_ﬂ-o o TE, ‘P'éa%d_:_ﬂq = 0.
— (=} - = 2
Qu g2 g2 dv @ dxdr Quds Qu
dy 2 13 1 .
19. Use the procedure outlined in Problem 18 to solve s Yt gt Y 2x
N 1de _ 2 9% Lohuces the equation to
The substitution y = Oa & 3, &
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2
d2u+{§_3x2/2)d_u__1_§_5u=0 or Q-l%-%xzuzoo
dxi X x3/2 dx x 2 dﬂ:z x
’ix duces this equation t
In turn, the substitution — reduce quation to
1 -3z
-—l; - Zu = 0 vwhose solation 18 u Cie + Cee .
dz
2
Lz -4z &xz —4x
1 dv 2 3t - et - L - ke here k = &2
Then ¥ = — — = — éz -‘%3 x = _;"'E;!—;”I'Tf' wheroe T =2,
Qu dx x’ Cie + Coe X e + ke ¥ Gy
20. solve % - (tanx + 3cosx)y + y2 cosiy = _ 2. .\Q\
2 4
The substitution y - 6]‘- i—:x-!f = f’f_&i% reduces the equation tos
u \
d_...E + (tanx - 3cosx)£ + 2ucos’x ';t%, ’
dx? dx Y
I . dz 2 cosx )
n turn, the substitution ol 2 = cos J‘c,\\'or z = ain x, reduces this equae-
Cé
2 .
. du du XN
tion fo E—z - 3 % + 2u = 0 vwhose solutiog\’is’ u = C‘gz + (;,ez"
z w
Then . i Q_ _ sec x(C,_e +26'2e’2‘,'§ ] e:aln:c . 2’“_2 $inx
Y Ou dx 2 Fx COSx = Secx .
C:.e +C2\é"~ c:‘if.nx . kvz gin x
A
¢ '\\,.3
:"SUPPLEMENTARY PROBLEMS
I’
Solve, oY

.\

2. xy" - (x42
v e )J‘"\‘F‘z,)’ Ans, y=Ctex+C2(xz+2x+2)

2, (1+x ) r:szx“,tr .
y\' Y=z = Cyx +C2(x2—1} + 2t

e
1

23. {x2+4}y"_2xr+2 =
¢ v=s J’=Cx(12—4)+ng+x2

e ErDY @D+ Gty = (g gye®

et
o

2x
Cre” + Cre™(x +1)2 + xe
25- y"—2taﬂ1y"—10yzg .

¥ = (Cieix'l- Cge-sx}sec x
2, 2fyr T2+ D)y 4 (x243 = 2, %
X4y = (B-x)e y = Ctxiex + Coxe™ + e"(:c2 +2)
2. ax’yr 4 4yt 4 (4 1) 2
Yy = =
y yevE e e, v Cn

28. xzy'" + (x..t;xz)y: + (1-2x+4x2) s . \ .
VI —xaDe y=e x(Clcos In x + C,8in Inx} + €
2. -yt ady =g 2 2
Cysin 2° + Cyeos x

Y
4 i 3
30. x ¥ +2xy"+y:(1+x)/x

¥ = Cicos(L/z) + Cysin(l/xy+ (1+0)/4
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Py e’y vy = 1780

(xsinx + cosx)y” - xc08x ¥y’ + yeosx - «

xy" - 3y’ + 3y/x = x + 2

Solve Problem 21 by factoring,

[(x+ 13D = (3x+ 4D + 3ly = @x+ e

xzy” — dxy’ + (6+9x2)y =0

ay" o+ 2y7 o+ dxy = 4

(1+12)y" - 2xy' + 2y = (l-xﬂ)/x

Ans. y = Cyc08(1/35°) + Cpsin(1/3x°) + 1/x°

¥y =Cix + Coeos x - sin x
_‘Y=C,_x+(32x5—x2—x ln x
y=Ci(3x+4) + Czesx + ze>
y = x (Cycos 3x + Cpsin 3x)

¥ = (Cycos 2x + Cy.8in 2¢ + 1) /x

b
|

= Ci(xz-lj + C;).\Qx Inx
O
/”s’&:

ON
€%
.\{“}\



CHAPTER 19

Linear Equations with Variable Coeffictenls
MISCELLANEOUS TYPES

IN THIS CHAPTER various types of differential equations of order higher than the
first and with variable coefficients will be considered. There is no genera)
procedure comparable to that for linear equations. However, for the typeg
treated here, the procedure consists in obtaining from the given cquation
another of lower order, For example, if the given equation is of order three
and if, by some means, an equation of order two, which is solvablc by one of
the methods of the previous chapters can be obtained from it, the given equa-

tion can be solved. -

N
DEPENDENT VARIABLE ABSENT. If the equation is free of y, that is,)is of the form
n net U
]-) f(g—-'}—’n ‘d—"-"—y" L R g-zn X) =0"\“';.
T dx O
o dy . dy d . )
the substitution il ;;—2 = a{?- wl}.l‘\\r“educe the order by one.

"\

3 2 e
2z d dy dy \
EXAMPLE. The equation % %9 4 g &Y ! A 3::(‘:{—"")2 e 0, of order three, is re-

d? 2
duced REP L gy @ g2, 3 )
ced to x o + 2 i x> 0, of order two, by the substitution % - P, d—': s
Q :
K
ip’ d;sl:-q-zg R
dx dxﬁ dxﬂ ) '\

A n nel
2) Y pdx, dy o dYy
:»\'7' dx™ n=l T =3 X} =0,
) k k
the sub&itution av q 4 H_.Y - 99 ;
ac” : et will reduce the order by k.

See Problems 1-5

INDEPENDENT VAR .
TABLE ABSENT. If the equation is free of x, that is, is of the form

3) f(_djl. 7, dy
d* gkl T V=0
the substitution & - p. Ly _dpdy _ dp
cx dx2 dY Cbl =p ‘_d—'yn
dly d d
=X - g, g dy _
0 PR PR @D | 2 A e,
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will reduce the order of the differential equation by one.

. dy d? b o 2
EXAMPLE, The substitution % P Yo, ®, 2y, dp , p(gg)z reduces the

dx? dy dx3 dy?
£y ar N [ 2 2
equation 3" - y"(y')" = L, of order three, to y? 42 . py(dp) 390 L1 of order
dy® dy

twa,
See Problems 6~10.

LINEAR EQUATIONS WITH KNOWN PARTICULAR INTEGRAL. If a particular integral y =u{x)
of the equation

4) (PODﬂ'+P1Dn'J‘+...... + Py, D+ Py =0 .
N\

is known, then the substitution y =av will transform .g\

5) (PD”+PD”'1+......+pﬂdg+p)y_0(x)

into an equation of the same order but with the depenﬁgnt variable absent, In
turn, the order of this eguation may be reduced by f}he procedure of the first
section of this chapter. Eguation 4) is called th&” reduced equation of 3).

s \/
X y \.o )
EXAMPLE. Since y = x is a solution of (02 - x8 ¥1)y = 0, the substitution y = wvx,
NS
2 2 NV d% 2-2%dv &
ﬂ:x@.g_ . H:xﬁq.z(_ig reduces (Dg‘,.xD.;_l}y:gzx to _‘U+ x _‘D = e_.
de o dx dx?  dk? R\ & o & F

Here, the dependent variable v is mlssmg a.nd the procedure of the first section above applies.
) See Problems 11-14.

'\
AN\
EXACT EQUATIONS. The differenti?il‘“equation
6) e - Ve Ly = 00
b "

is called an e{%f equation if it can be obtained by differentiating once an
equation R

7) <\\3 g(dx ""y’ 2’ Trernty g,y:x) =Oﬂ-(x)+c

of one lower order. For example, the equation

splyv + Myy'y" + 407 ¢ 1Y = 2
is an exact equation since it may be obtained by differentiating once the equa-

- . f 2
tion 3%y + ')+ 6 32 =x +C.

The linear equation 4) is exact p)rmrlded

™ 11
caerne F P 0, identically.
P, - Pﬂ_1 + }"ﬂ_2 + (-1}

EXAMPLE. Consider the equation (2° - 20y" + (8:° - 5)y" + 15"-7 * 5£ P"P 1én which Py
=5 P,=15 dP =15, P Sx—sandP,_—IG, dP°=x-2xan The equa-
tio; iSQB;Mth?Ece 2p ;:v' 1p -p'- 5-15+16-6 = 0. The given equation is the exact de-

s~ "2

rivative of (x5-- 2x)y” + (5:: -3)y' + Bxy = c.
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If equation 6) is not linear no simple test for exactness_ can be stateqd,
In this case, we show that 6) is exact by producing the equation of one lower
order from which it may be obtained by a differentiation.

If 8) is not exact, it may be possible to find an ir_ltegrating factor,
Again, no general rule can be stated for determining an integrating factor,

See Problems 15-2,
SOLYED PROBLEMS

DEPENDENT VARIABLE ABSENT.

- a2 dy 2
1.solve 228 o @2, 4 -,
d‘lz dx ~
d Ny 4
The substitution d—i = p reduces the equation to 2 d_P = P’ -4 of\, 2dp .
o N TpT- 4
3! p-2 p-2 2 2(1 G":eﬁ) 20, 2%
Integrating, éln—+—2=;+ 1z K; —+§=C1e x p = X = 21 e Y,
P . P '\(.-C‘elx 1—C‘¢2x
and y = 2 - 2 In(1-Cee™) + . ‘
>
diy dz X &
2-501Ve I-——‘—2—Z=0‘ .\\.
Cb:} dxi‘ i; \e
The substitution LY - KW dg
ution ;m—2 = ¢ reduces the P,sqgtion to =x i ¢ =0,
Then Ing=1nx’+ ink _'cify 2
B S vy kL L P
k™

A

.3 £

3. solve g—i.il =1 "\
3 L)
dx’ dx A

N\&/
AN

The substitition o -
sy Stltuno?\% = ¢ reduces the equation to

\ qg:iﬂand 9% = 2¢ + C,.

~

N

..\’d:y' 2
Then N - jmrcf2 dy 1 2
q\ 3 1( +C1) ’ -.._; =+ 5(2:_'_01)3‘/ +K| dy =3 115(2 +c1)5/2 . +K3.

= 1 1/2 9
Y = + —(x
105( *C" ¢ Kox® ¢ Kox + K, or 105y = i(h+(.‘,)}/2 . C,x2 + Cax + Can

3 3
4. solve (il)z + 33 d’
s dx? ]

PR I
Th i d’y
e substitution ~ 2 9 reduces the equation tg (fl-q. v Y dg day?
dx & t**rE-e=0 or g=xT 4G
a Clairaut equatjop, = *
Th dy d
en g = —ZL - gy, g2 Y 1, 2 2
ax? ™ 2Kx +K:+C,=C:’+4c’x+c,, and

_ 13 2 2
y—-—
307 v 2% s o g, & clx’+1acfx’+cez+ﬂs
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Oy d’y ¢
. Bolve (1+20)—= + dx —£L L (1_on% _
5 dxi dxz )dx € .
. d
The transformation p = Exl reduces the equation to
u = -
(1+20p" + dap'— (1=20p=¢* o pry 22 o _1lzZ e |
1+2¢ 1+ 2x 1+ 2x

Since 1-R+8 =0, we use the substitution
p=e v, p!___ e'x(v’-v), pn: e'x(u"-ZIJ’-!-v)

to obtain (1+2x)2"~2v'=1 or (14 21320”'— 2(1+2x)v’ = (1+2x), a Legendre 1inear emation.

, ¢
The substitution 1+2x =e’ reduces the equation to [48(8-1)-allv = ¢ or BB-2)v - §e.

Then v o= Ky+ Koe® o gt = Kiv Ko(le20® - J(1+ 200
p = z—i = ey = KT K2(1+h)ze'x—i%gil}xz::)e'x.
and ¥y = Ge™ 4 Coar? v 12413y + Gy +,§(zx+ 3ye "
ar y = A + Bal+3m)e 1 C+ %xg_fu.:\“
N
INDEPENDENT VARIABLE ABSENT. <!
O
N
6. Solve y" = (_'y’)5 + ¥ ¢ QO
dp N, A _ 3 d _ 7,4
The substitution y'=p, y"=p-~- reducks the equation to p —==p'+p or -—==p +L
dy W8 dy Y
o d
Then —%. - dy, arctanp <%+ Ky ad p- 3% = tan(y+ Ks).

a .
pr+1 e,

X - X
Now cot{y+K,)dy = dx, 3n 5'}11 {y+Ky) = z+ Ko, sin(y+Kq)= Cze”, and y = aresinCpe” + Cy.
i

7. Solve yy" = 2(y")2“:‘2‘}37?-

A\ i dp _
The substituj:;n} y'=p, ¥y'=p j"..; reduces the equation to  p(y @ ~2p+ 2) =0,

Here oa:(“)\ja:nd y = C is a solutlion, or
pY Y- o

. 22
. 221. ln(p—1)=1nA2y2. p=Ay +1, or x
p-1 Y 1+47y

Then < arc tandy = x + K, arc tan Ay = Az + B, snd Ay = tan{dz+B).
A

8. Solve yy" - (:y")2 = y2 Iny.

dp vation te
The substitution y'=p, ¥" =P o reduces the eq

2 2 d
A pdp - P YA | o ny 2.
dp =y Iny or 3 ¥ ) "y

J'de P Y ¥

dy = +dz, and _1n(1ny+ ¢1n2y+c) = tx + 1n K,

Then £ = mm?y+C,
2 y/In’y+C

L3

L
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2k 2x tx
tx ~ = —
Now 1lny+ /l2y+C = Ke'¥, /In'y+C = Ke'*-Iny, and C =K'e 2ke™* Iny,
oW .

.-x - (“ X ; -
This may be written as lny = G + Coe’* or, fimally, Iny = Cie” ¢ Cpe

since G, and C; are arbitrary constants,

2 2
9. selve yy" + (y') =y.
dp

dp . 2 2
D to py—~+ p® - y° for which
The substitution y!= P y”’ = p d_y reduces the equatio Py dy E y

2 2 oY 2.2 :z
is an integrating factor, The solution of py“dp+ p ydy = y'dy is 2p'y y + C°,

2
v, 7 -1y ‘ _
dy y+C tion is 2 sinh - Lo = 4 2+ AVZ. Then
= =2 - ¢t whose solution is - a
Now /2p V2 T y . &
2 £\ A
sinh™t y_2 =tv2x+ K LA sinh(tv2x +K) = + sinh(/Zx + Kid, and‘,'x:; {4 sink (/inc,)_
C ’ C }m:
2 xt\\.“.
10. soive jTg = ¢®¥ given that ¥=¥'=0 when x= 0, o\

) 2 2y
Putting y* = p %p(' we have Zpdp = 2%dy whose ’s'c:&\tion 158 p° = ¢’ v K,

AN\ d' ? .
Using the initial conditions, 0 = 1+K and K?‘\_‘l‘ Now p = &;y = £/e®Y _ 1 which, by the

v
%

substitution e = 2, becomes __ | :tg'.:j;t}fhe solution of this equation is arctan vz -1

2zvz -1 o&0°

L O

tx + € or, in the original variahléé.’ arc tan ve?¥ .1 - tx + C. Here, the initisl con-

N\
ditions require C=0 so that v‘eﬂyg-')\z tan{i1x) = £ tanx and, finally, 2y
¢. L\

2
- U ol 4%

Tt should be noted that the, form of

the solution of the given equation depends on the sign
of the first constant of in\tﬁg‘ration.

If in p? = ¢® 4K, K is positive and = 42, we solve

& .50. 1’ § - _ I‘
- *dz. and gpbain Lo vzeAT -4 =tx+C  then WEA A paTix gy
A A e R+ 4 Yoy Ny
W\
25 Q) 2 24x.2
A(l + B N
Al B ) z“x\)."ﬂ: Ve+ A%, sinee 4 is arbitrary, we may write .42 - ‘W—BZ“_E)_ and
1~ Be \"" {1- Be ™™
2. 2dx dx
ebtain ze . Beu -~ or ¢ - _2ACT .
(1 Be?#%)? 1- 2 24x

LINEAR EQUATIONS WITH ENOWN PARTICULAR INTEGRAL .

3 " 2
11. solve x (611 2)y" - (3x° sing+ 57 Cosx)y" + (6x sinx 4+ 22 cosx)y’ ~ (6 sinx+ 2 cosx)y = O

By iInspection it is seen that y-x jg 5 barticular integra],

By means of the substitution Y=, ¥y =ty

yl’.‘ = z!.'"-l- 27 \ yru _ xvm " 3?}"’ the
wation i . dsv dgv dz
equation is reduced to sinx &F . Cosx — = g, I turn, the substitution av .y
e di® : g
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this i in x %
reduces this equation to sinx ol gcosx =0 or %? = cot x dx,
" d%
Then 1Ing = In sinx + 1n C, Q=Ex—E=CSli. and u=l=Cisinx+sz+CS.
x

Thus, the selution is y = Cyx sinx + Cpx? 4 Caz,

12. Solve (x -3z + 6x—8)y!¥ = 2Py 4 3%~ Gxy’ + 6y = 0.

By inspection it is seen that y-x is a perticular integral.

The substitution ¥ =xv, y’: xv’ ¢+ v, y” = x'u"f{- 21;" ym = xu™ + 31)”, yiv = xvlv + 41}"’

reduces the equation to  (x' - 37 + Gx% — Bxyol + s 40 - 1267 + 2{-‘: - 200" = 0.
. dv . . ' N
Putting E = g, this equation becomes

x(x® -3+ bx— 6)% Flext e’ C1% x—M)g = 0 or

Integrating, Ing = x—4]nx+]n(x5—3xz+ﬁx_6)+1n/l o gz — = A e,
O dx3 x
2 3 2 o:{'; Z
Then &Y - Afx——-Me"dx :\\A‘\l{x -3 +6-8 %
2 < :\\\'D o
P SIS 1 1 3.6 6
s At (BT TOONN - A o -2 2o 2,
D+1 PSR, \ D+l 2 3
L\
\
1 1 2,1 /2 5.1 8
Now D(=) = ——, Dz~ aad DB(5) = -—,
X x2 15 X x‘i
o ' ' 1 2.1 1 1 1
sothat L (1_35,28 8, o 1 lispdysmi +0’d) - 0+
prix @O D+1 % x x x D+1 x
\ 2 1 22
AN = (D +2+D{Y = ——
R\ o 2
Y X
@ et 2 _
Thus, N E¥ . 4 Z B2 L, p PR L ;)e + Bz + C,
2 xﬁ dx x
X 4
s Y G vt Cx+ Gy oad y = G+ Car’ 4 Cox' 4 Can
x x )

2 3 X X
In this example, it 1s fairly easy to see that y=z, y=x , y=«’, and y=e are particu-
lar integrals, Thus the complete soluticn could have been written down immediately.

i L = t
13. Solve (2 sin x - x sin x — x cos x)y" + (2% COS x — SID X - COS x)y" + x(sin x ~ cos x)y
+ (cos x —sinx)y = 2 sin x — x cos x ~ x sin x.

and ¥ = sinx are particular integrals of the

x
it i hat y = %, ¥ = € X
By inspection it is seen t ¥ ! of the given equation using the method

reduced equation, We shall obtain a particular integral
of vartation of parameters.
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x
We take y = Liyx + lge” + Lysinx.
! Frx !
Then yi = Ly + Loe® + Lacosx + (Lyx + Lae™ + Lysin x)
and we set . ,
A Lix + Loe”™ + Lasinz = 0.
I
Now y" = Lpe® - Lgsinx + (Ly + Lae” + Lycos x)
and we set B L)+ Lye® + Licosx = 0.
Then y" = Lge* - Lgcosx + (Lpe”™ - Lysinx)
and we set 5] L;ex—L;sinx = 2s8inx~xcosx -x sinzx,
O
Solving A}, B), C) simultaneously, we obtain ‘.\
Ly = -sinx+cosx and L, = cosx + sin x, x"‘;”"x
- .
Ly = ~e“(xcosx~sinx) and Ly = pxe  (-sinx + cos x)’:"e”’ sinx - 4¢ coszx,
2 x.\ }
Ly = -1+x and Ly = ~x+ $2°%, \\
Thus, the complete solution is d
; x . 12 30> 1 T
¥y = Cix + Cpe” + Casinzx + 3% sinx + axzeosx - 5xssin.:r - g osx.
"\
\ ) 2 2 2
14. solve (xz+x)y'" - (2 x+1)y" + (x4 4 +"§7’ -1+ ;_ vy st
AN .

LR Y
a\"

By inspection it is seen that y =x"is a particular integral of the reduced equation, The
substitution y = xv reduces the given ‘equation to

¢ L\
(x2+x)‘v}’\- (x2_2)u" - {x+ v’ Ix(x + 1}2

_and, in turn, the substitution’s’ = u reduces this to

NS
” A ou" - GPone - e = 3xgx s D2,
"\{. x
Since the sum Of\thﬁ coefficients of the reduced equation of A) is identicaily zero, u=¢
is a particular ifitegral and we use the substitution
’..\‘w' u = exw, ul = gt . exw,

x
to reduce\;'l' \to
"4

x x
v = e+ 207w + 2w

2 -
{(x + x)p" + (x2+ 2+ 2w’ = 3xe x(x + l)2 .
Using the substitution w’ = z, this becomes

(P +x)2' + (204 24 2z = 3we (x4 1)’

or d_z_ v+ 2 1 - x2e%
= T ;-:H-l)z = 3¢ (x+1) for which “—_ js an integrating factor.

x+1

s 2
Then z—.—:f3xdx=x3+xi’

dw "~ -X x+1 -x
z+1 & P T EEtDe” + Ky o €
@ . 2 - - - - -
-_x =W x-xe - dxe % ~ 3e * + Cj_ f—— + Ce' i‘-‘: =y = ..xz - 3x -3+ gi + Cgﬂ'xp
€ . dx x
4
and Y = xv = x 33

™ — - g

2
3 3% - I+ Cix Inx + C,xex +. Cax,
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EXACT EQUATIORS.
= 0 is exact if and only if f

15. show that B}y + Pty y" + Byx) y” *tRWy s Rayy
I v

P, _P +P"-P + B o= 0,
Let the given differential equation be abtained by differentiating
Bo() y"+ Ry y" + Rytn) y' + Ryt y = C.
Since this differentiation yields Royi" + (R_;+Rl)y"’ + (3;4.32)3," + (H;+R )y’ + Ryy
3
f

we have F, = R,, P = R; +R. P, = R; +R, P = B"+VR and P,
iv e Wt
Ry - (Ry+R)) + R+ BDY - )+ Ry + RS

=0l

= 0,

n g
Now P—P+P P+%=s .+ R. . ;
Conversely, suppose P, - Py 4 B - Pf'ﬂi'.%“ = 0. Sinee A
[Byy" + B~ B Oy - L By« By B BB O
iv W : " & 5 g '}
= By + Py +By"+ By - (7/P; + PP My \\’,
2 IR

the given diqf:,sjsefﬁtial equation is exact,

Pnyl\f + Piym N ngu + %y’\yiy'
2 o
ANCEEE R AR N C IR AR T o

16. Solve xy"
B s 2-4+2-0 = 0.

The equation is exact since P, - B + P &
Consider the left member xy”+ (<°+ ?}siy" + (4 +2)y" + 2y,

To obtaln the first term we amst<(ifferentiate xy”. Now a(xy") =zy +Y
To obtain the first term of the result-

= (P e DY+ (2 + Dy’

and when this

is removed, we have (x°+x +2)J>"{\4'-’ (4x+2)y" + 2y

ing relation, we must differelit:j:ate (x2+x+ 2y’ When —(x“+x+2)y
\’2
Thus the given equation is the exact de-

d
= —({2x+1}y.
dt(+)3’

is removed, we have “(2&?1)3!’ + 2y
rivative of \\
Q\ A) xy” + (Zexe2)y’ + (+ Dy = Co.

»\ \
Since \P ). - = 0, we how treat the left member of A)
precisely as we did the corresponding member of the original equation.

(Zrz+ 1)y + (24 Dy

B2 (Zx+1) - (2c+1)y + 0

= ?-.!d;(:r:2 +x+ ¥

We reiove d%(xy") = zy"+y' and have

Hence 4) is the exact derivative of
= C,_x + Cﬂn

B ay’ + (:\:2 +x+1)y
x(kv&zi ; -

a linear equastion for which xe* is an integrating factor.
Thus, the complete solution of the given equation is

yeéx(xm) Cf ety 4 oG, f LRI NN Cs.

The ‘following scheme will be found convenient.
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xy’ & (FrxeBy" F @xey + 2y = 0
xy" xym + y"’
(x2+x+2)y" + (4x+ 2y + 2y
(x2+x+2)y" (x2+x+2)y"+ (2:1-1))':
(+ )y + 2
(2 + Iy (B by’ By
A xy" ¢ (Rrxedy + (e Dy = G
xy! xy” + Y
Fex+ )y’ + (4 1)y
. ”
(z¥+x+ )y (" +x+ )y’ + (24 Dy .\\\
B) xy' + (BPrxal)y = Cx+ G N
£ )
5 O
d%y d 1 ¢*¢
1%. solve dy Zdi = - >
dx5 dx »
3 2 \J
d d
We write w<l s oe —'_1{2&
dx? \{‘?; dx
0,2
dy dy o\ dy dy
dxz d:.’a '.:N dxz dt
N\ 2
dy.2 N d’y d
_y) .\\ 4 _yi; oy
&\ dx? dx
Thus, the given equation 'isx\xa.ct. being obtained by differentiating
¢
Al bk
A second int‘eg\atmn yields 2y g% =1Inx + Kyx + K whose solution is
AN
&\ d 2 2
\/: Y = x2lnx + Cua® + Cox + Gy,
18. solve  (1+2xydy” + gy 29y 1y(r)? + G2y’ - s,
We write - (1+3x32)y”' n 93' ¥+ 1Bxyy'y" + 18}()”)2 " ﬁx(y’){'
(1+3xytyy (1+32y*)y" + 3y%y" + Gayy'y"
» Byy" + 120yy'y" + 18y(y")? + 6x(y")
6y“y 8y2y" + 12y(y "2
1207y'y" + By(y")? + 6x(y’)
2
Sxy(y'y 12cyy'y" + 6y(y")? + 6x(y')’
The given equation is exact, being obtained by differentiating
(14 3ay2yy s (14 Bay? Jy"+6yy *62y(y'Y - e+ K
¥y (1+3xy"yy" + 39247 4 xy(y'y:

3y2yf

3y ¥’



MISCELLANEOUS TYPES 131

and this equation is obtained by differentiating (1+3rylyy! + Y o= 3%y kx4 G

In turn, this equation is exact and we have xyi ry = PN C1x2 + Cox + Ca

19, solve  #y" + 52°y" + (Z-2D)y' = (2+xd)y = 405 - &),

It is readily verified that this linear equation is not exact. To test whether or not it
has an integrating factor of the form x®, we multiply by ™ to get

LA ST
X

+1
¥y o+ 5x J’" + {21:“ - xmﬂ)y’ - (2xﬂ + .xw'z)_y = (40;5 - 4x5)xm

and write the condition

-2+ xm+2) - 2m+ D" 4+ (m+3)xm+2 +5@eDmeDx ~ M (m+D(w Fx
= (m+2)x nt2 S+ (m+2)(m m )x = 0, for all va1u3es$\0f x.

-2 . .
Then m = -2, and x = is an integrating factor. Using it, we havies

ot P

N/

x5y (f— - %)y - (-2; + %& 40x - 4x°
X 2%

xyn xym + y" . ’..}

>

4y" + (— - 1)y, \e— + 1y

n\\
2
4y’ 4 (E - x)y "+ ( -\}‘)y - (—5 + Dy
" ﬂ,“ 2
and y+4y“+(—-x)y=mx~x + K.
RO

s 2\J - X 2 3 ]
The transformation y = %\\\eﬁuces this equation to v"-v = (D" -1)v = Wx” — x° + Kx,
x

N\ Xt 2 % B 55
and the complete SDIGKOD\IS ot o= xzy = Ctex + CQE - (1+D +0D+ D+ --.)(20:6 - X +Kx)

O~ = Gt + Coe™ + Cax. + P
&

0N 2
20. solve 2 ’”¥ 2y +3yHy" + 2 = &

@)
We write, 2" + 2y" o+ By'y" + !Z(y’)2 = 2
2yy" 2yy" + 2y'y"
‘ Zyyﬂ- + 4y\|’yﬂ + 2(3’!)2
29y’ + 2(y")’ 2yy" + 4y'y" + 2"

and thus obtain by integration
ayy" + 2y + 2y’ = o+ Ky

2

Zyy’ 2yy" + 2y")
2y’
2 2yy’

Y

x 3 i .
and obtain 2yy' + yg = 22 4 Kox + Koo BY inspection, ¢ 1is an integrating factor; then
or yz = 22+ Cy + Cox + Cae ™.

x 14 x
J’zex = xzex - 2xex + 2ex + Ky{ze - € )+ Kae” & Ca
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3 12 ' ;
Y _ ' { + X COS - -
91. goive xcosyy” - 3xsiny y'y" - cosy y" - xcosy (¥ Y + slny(y') +xcosyy -siny-=g,

. sin y _xcosy y' - 8InY  4y0 jast two terms of the glven equation suggest 1
Since —( ) = z x
X

as a possible integrating factor, Using it and integrating,

2 ; 2
cosy y' - siny{y")  siny _ Cy or cosyy"' - siny (y') + siny - Cux,
X x

The substitubion siny =z reduces this equation to 2"+z=Cyx whose complete solution

is z = siny = Cyx + Cpeosx + Cesinx.
o {\
SUPPLEMENTARY PROBLEMS o ‘\

Solve, A\ \/

2 AN
2. ¥y"+ Y +1=0 Ans, y = ln cos(x.‘\ql\) + C,
B, (Gx)y" + Wyl = y = Cy +\(parctanx + 1/x
2. xy" -y’ =-2/x-1nx y = C11\4C,+(x+l)1nx
25, y"+y"=x Jﬁ\f\tte s Cox + Ca + x(x° —4x + 12)/12
2%. yy"+ () =0 \F=CitCy+ylny
2. yy"+ ') =2 « y o=l i G+ Gy
28. yy" = (J”)z(l —y'cosy+ yy! sin y) %=Cy+ Colny + sin y
2. (2x-3)y" - (Bx-Tyy" + dxy’ - \) y = Cyx + Cpe™ + Cye™™ = 2

Hint: y =x 18 a particular m’oe\gml of the reduced equation.
30. (2 ~1)y" - & y7 4 Sxy’ £'0
3 oy - =y Iny :’\:"

Hint: Use Iny = 2.0}
32, (x +2n¥" + 2(y'$+ 2y’ = 2
33. (1+2y+3y ) ‘+By Iyt + (y! ) +3yy¥] =x ¥+ yz + y’ = Cizz + Cox + Cq + x“fz-;
H. 3x[yzy"‘<r\§yy 20’ - sylyy ¢ 2¢y') = - 2/x

Hint' I/x is an integrating factor, Ans,

¥y = C‘(x +4x) + ngz + Cy
Iny = C,ex v Cpe ”

Yx+y) =x2s Cix + C,

y =C1::5+C,:+Ca+x1nx

2
35, yy™ + 3y’ y 2" - 200 + yy! = ¥ Ans, y = C: + Cae™ + Coxe™ + e

* is an 1ntegra.ting factor. Solve also using y = v,
36. 2y +Ly" + 22" + 4% 4 2y =

Hint: e

. Ans, y +2y =Cy003x + Gy 8inx
Hint: Use ¥ +2y =y,



CHAPTER 20

Applications of Linear Equations

GEOMETR ICAL APPLICATIONS. In rectangular ¢ i
_ : oordinates the radi
a curve y = f(x) at a general point on it is given by ius of curvature K of

[1 ' (%)2] 3/2

d’y

2

E =

N/
Let the normal at the point be drawn toward the x-axis. It is clear from
the figures that the normal and radius of curvature atany point have the same
direction when y and d?y/dx® have opposite signs and have opposite directions

when y and d?y/dx? have the same signs.

PHYSICAL APPLICATIONS. OSCILLATORY MOTION. Consider a ball bobbing up and down at

the end of a rubber string.
If the other end of the string is held fixed and no external force is ap-
o it has been started, and if the mass

plied to the ball to keep it ‘moving one :
of the string and the resistance offered by the air are such that they may be

neglected, the ball will move with simple harmonic mot ion

x = Acosett B sinwt

where x is the displacement of the ball at time ¢ from its position of rest
or equilibrium,

133



134

} ~.'\
HOR IZONTAL BEAM§<.I‘11e problem is that of

APPLICATIONS OF LINEAR EQUATIONS

For simple harmonic motion:
a) The amplitude or maximum displacement from equilibriwn position is m

7
since when dx/dt = 0, tan wt = A/B, and x = vVA? + B2,

b) The period or number of units (sec) of time for a complete us_r:illation is
In/w sec, since when ¢ is changed by 2t/w sec the yalues of x and dx/d¢
are unchanged, while for any change of t less than this amount. one {or bath)
of x and dx/dt is changed.

¢) The frequency or number of oscillations (cycles) per sec is w/2n cycles/sec,
2

. , . o “x
d) The differential equation of simple harmonic motion is m — = - kx, where

. . 1t

k is a positive quantity. In the above illustration ¢

2

mg—z{— = — my?(4d cos wt + B sinwt) = —kx.\"

dt® N

where m is the mass of the ball and k = mw®. o\

¥ 4

If the above assumptions are modified so that thg.\?\ééist,an{:e ol the air
cannot be neglected, the ball will move with free damped motion

x = e'St(A cos wt + B\sinwt).

The motion is oscillatory as before but nevef Fepeats itself. Since the damp-

ing factor %' decreases as t increasesx;.\the amplitude of each oscillation
is less than that of the preceding one. Me frequency is w/2n cycles/sec,

See Problem 8a,

_ If ti_l_e resistance offered to the‘;n’lbtion is sufficiently great, other cases

will arise. N\ See Proublem 8b.

If in addition to a resisfqa'\ﬁce. there is an external force acting on the
ball or the complete system{is given a motion, the motion of the ball is said
Ec_) be forced. If the forcimg function is harmonic with period 2n/x, the mo-
d}on of the bgll is thei“result of two motions -— a free damping motion which

les out as time incréases (called the transient phenomenon) and a simple

harmonic motion w}tﬁ»ﬁeriod that of the forcing function (called the steady-
state phonomen }:j::" See Problem 9.

"\

: determining the deflection (bending) of
a ) 5 :
beam under given loadings. Only beams which are upiform in material and

-
?_Egpifwﬁll)e?: considered, It is convenient to think of the beam as consist-
running lengthwise, In the bent beam shown, the fibers of the

hole L e of the lower half stretched, the two
presgidbiggsiig:gﬁtﬁd by a peutral_surface whose fibers are neither com-
0 ed. The fiber whl;:::; originally coincided with the hori-

olaseic in the neutral surface along a curve (the
. curve or curve of deflection). We seek the equation gf this curve.
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{?OHSJ_.deI‘ a Ccross section of the beam at a distance x from one end. Let AB
be its 1ntersect10;_1 with the neutral surface and P its intersection with the
elastic curve, It is shown in Mechanics that the moment # with respect to AB
of all external forces acting on either of the two segments into which the

beam is separatec_i by the cross section (a) is independent of the segment con-
sidered and (b) is given by

A) EI/R = ».

Here, E = the modl}lus of elasticity of the beam and I = the moment of inertia
of the cross_sectlon with respect to 4B are constants associated with the
beam, and £ is the radius of curvature of the elastic curve at P.

For convenience, think of the beam as replaced by its elastic curve and
the cross section by the point P. Take the origin at the left end of the beam
with the x-axis horizontal and iet P have coordinates (x,y). Since the slope
dv/dx of the elastic curve at all of its points is necessarily small,

5/2
[1+ & . Y
R - : - — 'a,pbmnmately,
dy 4y N
cix? N\
w\/
and 4) reduces to ‘\
2 "\;\
B) L Oy,
d;g .

The bending moment ¥ at the cté&s section (point P of the elastic curve)
is the algebraic sum of the mbments of the external forces actipg on thg seg-
ment of the beam (segment ,of;\the elastic curve) about the line AB in the
cross section (about théhoint P of the elastic curve). We shall assume here
that upward forces give, positive moments and downward forces give negative

moments, O™
A

EXAMPLE. Consi’c[}r“a 30 foot beam resting on two vertical supports, as in tke f{igure
below, Buppose :e.%e;am carries a uniform load of 200 1b/ft of length and a load of 2000

Ib at its middlg,

O ' 30-%
) 3
I . Ly $(30 =x)——— e H(30-2) ——
L 15 —% —] R x
OJ
p—
¥ P 2000 F
4000 200x . 6000 — 200x 4000

. t from P, egual to

i are (o) an upward thrust at O, x fee .
os acting on O and (&) a downward force of 200x
x feet from P, The bending mo-

The external fore
one-half the total load, i.e., 2{2000 +.30.200) =4Dgod1ht’hus 4
1b thought of as concentrated at the middle of 0P an 3

ment at P is 2
M = 4000x - 200x(zx) = 4000x — 100x".

s independent of the segment used, consider the

To show that the bending moment at P i 0-x ft from P, (b) the load

forces acting on PR: {a) an upward thrust of 4000 1b et £, 3



136 - APPLICATIONS OF LINEAR EQUATIONS

of 2000 1b acting downward at the middle of the beam, 15-x ft from £, and (c) 200(30 -y
1b downward thought of as concentrated at the middle of PR, $(30-x) ft from P, Theq

M = 4000¢30 —x) — 2000¢15~x) - 200¢30 —x)* $(30 —x)

- 4000x - 100x%, as before,

A beam is said to be fixed at one end if it is he_ld horizontal there by
the masonry. In the example above the beam is not horizontal at @ and is saig
to he freely supported there.

SIMPLE ELECTRIC CIRCUITS. The sum of the voltage drops L
across the elements of a closed circnit is equal — 00—
to the total electromotive force E in the circuit.
The voltage drop across a resistance R ohms is Ri, ) .
across a coil of inductance L henries is L di/dt, ﬁ@' N\
and across a condenser of capacitance (capacity) O
C farads is g/C. Here, the current i amperes and e N ’WL
the charge g coulombs are related by i=dg/dt. We A7

will consider R, L, and C as constants. O it

#
$

2%

The differential equation of an electric circuit;}ontaining an  inductance
L, a resistance R, a condenser of capacitance €)\‘and an electroumotive force
E(t) is therefore \\

y q\\ 4
ch L= + Ri + 34 =
dt R\ EH)

or, since i=dq/dt, di/dt= dzq/dtz;.i; S

ad
) L,g-{S+Rd—q+3=E(t)
“A\Je2 dt ¢
from which ¢ = q(t).’mgi;.f"be found,
- "’.'\“"
By dlfferent\iq.t’ing €'y and using dq _ i, we have
O dt
AN\ 2.
D) e X L1, pdi i o_ o
O Y Gt e o= BNt

from which i = i(t) my be found,

SOLVED PROBLEMS
GEOMETRIC APPLICATIONS.

1. Determine the ¢ i
Doternine the :;ve ;l}use radius of curvature at any point P(x,y) 1s equal to the normal at P
me direction, (b) in the opposite direction |
542 .
1+ (yh4)
a) Here [——y-——-_ = vz
¥ = =yl1+ (91

oF  yy"+ 3V + 1 - o,

The equation i .
quation is exect and ap Integration yields ¥W'+2-C=0 or ydy+ (x-Cyyde = 0
= x-Cy = 0.
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. : 2
Intesrating again, 3y + $x-C)® = K or 32+ (x-(C)? = C», a family of circles
with centers on the x-axis, i .

3/2
[1+ (y)] 1/2
by Here -—T = y[1+ (y:)'z] or ¥y - (y’}2 _1 = o,
. . d
The substitution y’ = p, y"=p d—i of Chapter 19 reduces the equation to
J’P;Q—z—1=(] or pdpzd_y.
Y 1+ P2 Y
Then 1n(1+p2) = 1n y2 + ]n Cf, 1 +p2 = nyz. or dy = +dx.
/3.2
Ciy“ -1
; -1
Integrating, cosh = Cyy = +Gzx + Ca, Cyy = cosh(tCyx + Cg), or
y o L omets | tatwela)y . A\
261 (’..’:
The curves are catenaries and the eguation may be written in the fm‘m
y = iA[e{Bix)/A + e““iix)/“1 },\‘;'\}he're A= (-31- and B = g_"f .
\ 1 1
o~
PHYSICAL .APPL£C§ IONS
HOTION OF A PENDULUN. R
P
2. A pendulum, of length [ and mass m, suspen@e’g‘at P (see
figure) moves in a vertical plane through'?'. Disregard-
ing all forces except that of gravity..'\find its motion, o
Under the assumptions, the cenb{fﬁf gravity € of the l
bob moves on a circle with cehter'P and radius l. Let O,
positive when measured counterclockwise, be the angle
which the string makes wit}}\the vertical at time ¢. The c
only force is gravitx,,,pg\itive when measured downward, \ R o
end its component g@g’ the tangent to the path of the
bob is mgsin6. ¥'s denotes the length of are CoC,. then Co
s = 16 and the.gecéleration along the arc is ng 5ind mg
\.\}, I : 4% o]
dt dit
4% a8 0
Thus mel &0 = —mgsin® or [ —5 = -gsinb
di? dt
9 2 — r de = 4 E‘—E.
Multiplying by gg? and integrating,. [ E) =2gcecosB+6C O /m T

This integral camnot be expressed in ‘terms of elementary functions.
When 6 is smail, sin § = O, approximately. Wien this replacement is made in the original

. E o 18
dB g4 solutionis 6 =C cos‘f-t+ClenJ:t-
differential equation, we have 0 + '1'9 = 0 whose ! L l

/2 2 o {
. i dt riod n f-
harmonic motion. The amplitude 18 Ci+Cp and the pe 18 g

This is an example of simple
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WOTION ALONG A STRAIGHT LINE.

3.

A mass m is projected vertically upward from 0 with initial
velocity ve. Find the maximum height reached, assuning that the Ku
resistance of the air is proportional to the velocity.

Take upward direction from O as positive, and let x denote - L
the distance of the mass from O at time t. The mass is acted
upon by two forces, the gravitational force of magnitude mg ng
and the resistance of magnitude Kv = K% each directed down. ¥
Hence, using i
mass x acceleration = net force, - .
2 2 O T
d dx d
mﬂ-{=—mg—K— or 22, k?-:—g. where K= mnk,
dt2 - dt dt2 dt . '\
N
. -kt , e
Integrating, 1) x = Gy + Cse - f-t, and then differentiating gnf;u"w’ith respect to t,
dy -kt g .n:‘;
2) v=— =.—kC - AR
dt 2 k O
When ¢t=0, x=0 and v=vy. Then C;+ C,=0, U'o:—kC,.—‘f-}o and (4 - - O, :_0*%
:«\\J k
Making these replacements in 1}, we have « = _1(5\*\’*36)(1 LN
K2 NV k
The maximum height iz reached when v =0, F.ffPI"ll’zZ). e-ktz -8 [4 and 1 I g+ kig )
\\ ke, &' kvo k
Then the maxi i i = L A, R \
ximum height is x -;(g‘rﬂl\tq,‘)\(l— -£& Yy — E(l In &t on) B 1(“0 T s kvo).
KO g+kuy  kk g & P
&« :

A.mass m, free to move along(the x-sxis
tional to its distance from the origin,
and (b) if it starts ap-xl® x, with initi

No

. is., attracted toward the origin with a force proper-
Find the motion (a) if it starts from rest at x = o
al veloeity v, moving away from the arigin.

#

Let x dencte tng)dlstance from the origin to the mass at time ¢

2 ”\‘. . 2
Then myENE - Kx or — + k =0 =
X = f wh =
2 ere K = mk .

Integrating, 1) «x i
Cysinkt + Cycoskt, and differentiating once with respect to t,

2) v = -kC,sinkt + BCy coskt,

a) When t=0, »-= : =
%o and v=0. Then C,<=0 from 2y Cy=x5 from 1), and
X = x5 COS kt,
b) When t -0, x=x5 and v

=vg. Then 62510, Cl= Uofk, ahd

s
X = = =3 ]
51n Rt + x5 cos kt,

In a) the mofion is =i
iple harmonic motj
on of amplitude x
o and period 2n/k,

In by the motion i i :
i5 simple harmonic of ampl itude Vg + kzxé d i
T and period 2n/k,
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H#OTION OF A COMPLEX SYSTEN.

B. A chain hangs over a Smc-otl‘l peg, 8 feet being on one side and 12 feet on the
Othm.-' Find Fhe_tlm? required for it to slide off (a) neglecting friction end
() 1if the friction is equal to the weight of 1 foot of the chain -

8-x

a) .Denote the total mass of the chein by m and the Iength (feet) of the chain
which has moved over the peg at time ¢ by x. At time ¢ there are (8 -x) feet of "
chain on one side and (12+x) feet on the other. The excess (4 +2x) feet on one

12

[ Wiai

side produces an unbalanced force of (4 +2x}ﬁ pounds, Thus
X : '

2
dx
tz

2
- ng dx ®
4+ 21)20 or 10 d_tz = gx + 2g. 1

mn

B,

Solution 1, o X\

d% N

Integrating — - %x = g, we have x = TRt ., g TEDE _
dt :"‘\. v

No/"

£ N
When t=0, x=0 and v=0, Then Cy=Cp=1 and x = ¢ & WAy VE/WE _ 5 _ 2cosh\(-%t-2.

A\
x\.l
f /2
Hence ¢ = 1o cosh™t s(x+2) = n lnft?gp 4+
g £ {’\\’ 2

When x = § ft has moved over the peg, t .:%::‘ ’? In(5 + 2vB ) sec,

Y.

Differentiating once with respect to ¢, v

3
R

o

ER
N
A
N

Solution 2, Multiplying the equation\hy % and integrating, we have

~

2 ¢ \.J i
dr d'x dx &\ dx dx 2 2
Zax TR E and 5(=y = 38x? + 2gx + Cu.
O ~ Fm R : dt gt G
When ¢z =0, x=0 and dx\]’gt\=0 Then ;=0 and
G 10 &
5{%% = gx + 2gx or dt = = —
K 2 & v’x2+4x

{The positive snnﬁii‘e root is used here simce x increases with t.)

N 7
N

I _\/ . - E dx - .1.9 1n{x + 2+ Vx2+ ar ) + Cgz.
ntegrating, t g
¢ J Sarnio4

10 10 x4+ 2+ Vit b b
When ¢+ =0, x=0., Then (; = - i In2, and t = ri ln — as before,
2 dzx
b) Her dx ™ _ ™. or wLE - (w+dg
} e m dt2 4+ }m 2 . dtz

dx 2 2
Multiplying by :—’: and integrating, we have ()" - g + 3=+ Cu

dx - £ H dt = E dI "
When ¢ =0, x=0 and »=0, Then Ci=0, and e ‘(ﬁ(x +3x) or 8 JZi s

Then ¢ - [10 1n(x + g+v’x§+3x) + Ca.
g
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0 2 3
When £=0, x=0, Them Cz; = = Elng and ¢ = —-1|1-(x+-+v'12+ Ixy,
! : * g 2 Js 3 2
When x=8, t = %011112:54-—22- = 1,4 sec.

6. A bead slides without friction along & straight
rod of negligible mass as the rod rotates with
constant angular velacity w about its midpoint o.
Determine the motlon (a) if the bead is initially
at rest at O and (&) if the bead is initially at L’
0 moving with.velocity g/2uw.

Let the bead be x units from O at time t. It A
is being acted upon by two forces, (i) gravity and ~
{i1) the centrifugal force sw?x scting along \\
the rod and directed away from O. Since the rod )
has rotated through an angle wt, the component e N
of the gravitational force along the rod has magnitude mgsinwt; fts” direction is toward 0,
Bence 3

L
%\“w
b

42 . £ A
. &
n—— = mi x - mg 8in wi or —{-.w?‘x = - g sinwt.
dt dt2 N\
oy
- : - w} =t '
Integrating, D oz s Coe" 4 Gt 4 —-‘-—i\sm wt, Differentiating once with re-
260"
spect to ¢, A
t sy
2) v WCye”" - wCye’ 3’{ + % cos wt,

a3

O
RS
Then Ci+Ce=0 from 1y, Cr{}.ﬂf-z-i—; 0 from2), Cy=-Cp= -

a) When ¢=0, x=0 and v =0,

g
% — ¢ and
\ 4w
= B et \ ut &
= e (A ) + Loslnwt = - & g .
P\ 202 2ainhwt + —zbinw:.

by When t=0, x=0 nd‘;g}’-_-g/zw'

N/

Then C1+Cgf‘.:\ 01-(“9:0’ Ct=62'-'0-

\ and x = -—%sinut.
.00\.’0 %

e &

sprINGs.

[ and .

{« A spring, for which k =
upper end fixed, A mass,
After coming to rest, the
Discuss the resulting moti

48 l'b/ft. hangs in a vertical position with its
we:nghin_g 16 1b, is attached to the lower end
mass 1s- pulled down 2 inches and reIeased-

on of the mass, neglecting air resiatance, .

L L e

T

- 48x or dx ,
taking g = 32 ft/sec .
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Integrating, x = (4 sin /§E t + C, cos Vo8 ',

pifferentiating once with respe _ odx .
pect to t, V-E;=/§§(Cicos\/ﬁt-cgsm/ﬁt).

@i

1
t= ' = - =0, =
when 0, x 6andv 1] Then Cy=232, C,=0, and x = écos /GE 1.

This represents a simple harmonic motion, The period is - = 0,641 sec, the frequency is

/55 . /55

o = 1.56 cycles/sec, and the amplitude is 2 ft,
6

Al®

8. Solve Problem 7 if the medium offers a resistance (1b) equal to (a) v/64 and (b) 64v, where v
is expressed in ft/sec,

16 d % 1 de d% 1 d RN
a} Bere —_——_— = - 48 - — = ar jading - = = i -
P 64 ot e + o + 96x ?:.\\}JSmg the D nota
, 2 1 . i:} “.
tion, D+ T D+98)x = [D-(-0,0156+9.80)){D - (-0.0156—9.80)]x = 0,
o ?
-.01668T &
and A = e 0.0156 (Cy cos 9,88 + Cy, ain>9.8t).
Differentiating once with respect to ¢, x\\.J
N N . .
i 0-0188% [ o 8C,- 0. (]156(3',_)005%\81 ~ (9,8Cy + 0.0156C,)sin 9,87,
¥hen t=0, v=0 and x =1/6. Then C; = l/&. ‘IJ = 9,8C; - 0.0156C,, and C; = 0,000265.
Thus, ’~
x = ¥ Olset(::“cos 9.8t + 0,000265 sin 9,8¢),
AN
N\
M\ 9.8

This represents a damped osci}(&t'tx)ry motion. Note that the frequency = o = 1.56 cycles/sec

remains conpstant throughout the. motion, while the amplitude of each oscillation issmaller than

=0, 0156t
the preceding one due to t‘h% dampmg factor e . At t = 0 the magnitude of the damping

factor is 1, It wi L"he\2/3 when e m0-01867 = 2/3 or after ¢t = 26 sec. It will be 1/3 when

-0
g OOTB8E 1/3 mi\fter t = 70 sec.
b) Here \%,‘f_" = _ 48x - b4 de or (D% + 128D + 96)x = O.
3 df‘z dt
=-0.%8% -187.841
Integrating, x = Cie + Cpe .

Differentiating once with respect to ¢,

- -18%.841
_0.76C.e 07— 127.24C,e .

v
When t=0, x=1/6 and v=0. Then Ci+ Cp = 1/6, =0.76C1-127.24C2 = 0, €1 = 0.165,

Cz = -0,001, and

- -127.24%
o.166 ¢ 078" _ 0.001 ¢ ,

x

The motion is not vibratory. After the initial displacement, the mass moves slowly toward

the position of equilibrium as t increases.
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9. Solve Problem 8z if, in addition, the support of the spring is St
given a motion y =cos 4t ft.
Take the origin asin Problem 8 and let x represent the change
in position of the mass after t sec, From the figure, it 1s seen
that the stretch in the spring is (x-Y) and the spring force
is ~-48(x -y} = —48(x ~ cosdt) 1k, Hence,
2
1 dx
Bdx . 4g(z - cos 4t) -~ — =
8 412 64 dit
z 1 _
or 0+ e D+ 96yx = 96 cos 4t.
. =0.0168¢ 96 -
Integrating, zx = e (Cyco58.8t + Cy 8In 9, 8t) + - Gos bt
DY+ 3z v 960
= 8_0-01561:(01 cos 9.8t + 02 8in9.8t) + 0.0019 5‘1,[]{:1’1":‘0 O onon 4t
Differentiating omce with respect to t, “

oS
[(9.8C, -~ 0.0156C)co05 9,8t - (9.8C, # 02}156(:,)3111 9,8¢)
+ 0.0076 cos Q 4.8 sin 42,
'\ "

=0.0lc6et
= e

When t=0, v=0 and x = 1+1/6="7/6. Then C, =\"'J-/30a Cq = -0.,0008, und

-0.0156% A
x = e (-0.0333 cos 8,8t - 0.0008 _Sin"9,8t) + 0.0019 sin 4r + 1.2 cos 4L,

The motion consists of a damped harmonig:{mét‘fion which gradually dies away (transient phe-
nomencn) and a harmonic motion which remains' {steady-state phenomenony, Afteratime the only
effective motion is that of the st.ead{:gtate. These sterdy-state oscillations wil] have &
period and a frequency equal to thoseyof the forcing function y = cos 4t, namely, a period of
2nc/4 = 1.57 sec and a frequency bt\@fm = 0,637 cycle/sec,

The amplitude is v/(0.00100% % (1.2° = 1.3 ft.
</
P y ’\.“
A mass of 20 1b is sbepended from a spring which is thereby stretched 3 inches, The upper end

of the Spring is bllen’given a motion y = 4(sin 2t + cos 2¢)ft. Find the equation of the motion,
neglecting air resistance,

10.

Take thez\ofigin at the center of
change in position of the mass at ti
the spring constant is 20/ %

gravity of the mass when at rest. Let x represent the

s me t. The change in the length of the spring is (x-Y),
= 80 1b/ft, and the net spring force is -80(x ~y). Then

20 dzx 80 4 d2
e - . x -~ 4 8i -
32 ;2 n 2t 4 cos 2t) ar «d_':. + 128x = 5i2(sin 2t + cos 2t).
t
Integrating,

* = CycosvVIZB ¢t + Cs sin v12g

128
‘ _ t o+ ?i.(sln 2t + cos 2t).
Differentiating once with respect to t

v = -
V128 ¢, sin Y128t + V128 C, cos V128 t + ?(- sin 2t + cos 2t)
When ¢ =0, x=4 and v=1, l
Then 128

4 =0+ =, = - ; v
1 n C1 0.129; and 128 C2 + -2321-6- =0, Cg = =0.730.
Hence, x = - v v
0.13 cos vVIZB ¢t - 9.73 sin 128t + 4.13(sin 2t + cos 2t).
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11. A mass, of 64 1b is attached to a spring for which & =

L 50 1b/ft and brought to rest. Find the
position of the mass at time t if a foree equal to 4s ug

in 2t is applied to it.

Take the origin at the center of gravity of the mass when at rest, The equation of motion

is then s
84 d'x _ d%
55——2+50x=431n2t or = + 25x = 2 sin 2.
dt dt?
Integrating, x = (y cos 5t + (, sin 5t + —2 sin 2t.
21 .
Differentiating once with respect to t, v = =5C, sin 5¢ + 5C,; cos 5t + % cos 2t,
Using the initial conditions x=0, v=0 when t=0, (3=0, Cg= ~ —4— » and
105
* = - 0,038 sin 5¢ + 0,095 sin 2t.

The displacement here is the algebraic sum of two harmonic displacements of,di\fferent periads,

'Y
12. A mass of 16 1b is attached to a spring for which & = 48 1b/ft and broight “to rest. Find the
motion of the mass if the suppert of the spring is given a motion . = sin v3g ¢ ft,

Take the origin at the center of gravity of the mass when at*'g'fe\st and let x represent the
change in position of the mass at time ¢, v \
The stretch in the spring is (x -y) and the spring forceM% -48(x —y). Thus,

N,
16 de 'H?;
— == = _48(x - sinv3gt) RN + 8x = 3g sinvV3gt.
g er : {. \’dtz
Integrating, x = Cycosvigt + Cp sifivBgt - 3v3gt cos Vg,
{..1’ 3 .
and v = _cil/ﬁsin@t+an/3_g'c03\/@t—£\/@cos/§t+?gtsm1/@t.
o’ : ) |
Using the initial conditions x;.D\\v=0 when t=0, G,=0. Cp=3, and
A Y
A 3
x5z é\sinn/?,_g_t - ‘/—?_gtcos‘/ﬁgt.

The first term representé a simple harmonic motion while the second represents a vibratory
motion with increasing @mplitude (because of the factor i}, As ¢ increases, the amplitude of
the oscillation incre\ézg;‘eﬁ until there is a mechaenical breskdown,

O\

R\
13. A cylindricadhuby 2 ft in diameter stands in water (density 62.4
1b/f43 ) withuits axis vertical, When depressed slightly and re- @

leased, it is found that the period of vibration is 2 seconds,
Find the weight of the cylinder.

j
|

Take the origin at the intersecticn of the exis of tl}e’cy%m- — =
der and the surface of the water when the buey is in equilibrium,
and take the downward direction as positive.

Let x (ft) denote the change in the position of the buoy at . X
time t. By Archimedes’ Principle, a body partly or total%y sub- \J
merged in a fluid is buoyed up by & force equa} to the welghttgf
the fluid it displaces, Thus, the corresponding change in the

buoying force is 62.47m(1)’x and

2
2 d% w09 _
Wdx _ _gana or  — =% =0
gdt,_ dt

2
— LI
where W (1b) is the weight of the buoy and g = 32.2 ft/se
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Integrating, x = Cp sinv2o0om/W¢ + Cy co8 yaooen/We.,
- 2/fW008 < 2, W - -—-2'::’9 = 640 b,

Since the period is

v 20097/ K
HANGING CABLE.
14. Determine the shape of a uniform cable which hangs under its Q

own weight, » 1b/ft of length.

Choose the coordinate axes as in the figure, the origin
being at the lowest point of the cable, Consider the part be-
tween O and a variable point P(x,y). This part is in equilib-
rium under the action of (1) a horizomtal force of magnitude
H at 0, (2) the tension T along the tangent at P, and (3) the
weight K of OP.

Since OP is in equilibrium, all force acting horizontally H

toward the right and all force acting horizontally toward the A
left must be equal in magnitude, and, also, all force acting .\ °

vertically upward and all force acting vertically downward.. ™

N éz w

tan = =
7\ i

Now H is constant, being due to the part O of°\Ehe cable, while W - ws, where s is
length of OP. Thus, "T\

Hence, Tecos® = H, Tsinf = W, and

N

£

dzy Id wids w/—f
S - —— = ‘L'V— = —_ .
af Bk e gt

a

To solve the above equation, wrif@% = p and obtain

¢ & \“}
dp™y v
d—.’.:'.,,.— j} 1+p2 or d'p = E dx.
O L
Integrating be‘{e‘n{ ‘the limits %=0,p=0 and x-z, p= p
’\ 1 1 ]

™ .0
N N
\"®

g\

\ N/
\
4

Integrating

Sin.h-l B =

FDIE

dy
x and p=—=sinh£.
dx 0>
dy = i E imi
y sthxdx between the limits x=0,y=0 and z=x,y=Y,

y = H v
E(coshf-{x - b, a catenary.

akIf the origin had been taken at a
making H/w the y-i
/ ¥y-intercept of the curve) the equation of the curve would have been

¥ij
Y = Eccmhfx,

the

distance H/w under the lowest point of the cable (thUS
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HORIZONTAL BEAXS.

15. A horizontal beam of length 21 feet is freely supported at both ends. Find the equation of
its elastic curve and its maximum deflection when the load is » 1b/ft of length.

y
X
0 : R x
x=0/ - \x=2l
y=0 éx-—-\P(Z,J') \ x=1 ¥=0
y'=0
wl wx wi

Take the origin ai the left end of the beam with the x-axis horizontal as\in the figure.
Let P, any point on the elastic curve, have coordinmates (x,y). \\

Consider the segment OP of the beam. There is an upward thrust wl lb as'0, x ft from P,
and the load wx lb at the midpoint of OP, $x ft from P, Then, smceiEI dzy/dx2 M,

2 \
13 EI-d—% = wix - wx(kx) = wix - J‘;wa;.{\ 3N
. dy _ 1 2 NN
Solution 1, Integrating 1) once, EI = " 3 wlx® = \N\dx® + Gy,
«? 1 .3
At the middle of the beam z=1 and dy/ds = 0, Dhefl Cy = - Swl’ and
dy 1 .2 W5 1. 3
Splx® & STw’ - = wl”,
& B = 3" 88" " 3
Integrating 2), EIy = é wlxs - --21-;;! ; ﬂ?l’x + Cg. At 0. x=y=0. Then Cg= 0 and
'\
3) O - Y- 8P,
¢ '\\.. 24EI
’:" 1115 1I|+C;\:-1-C.'
Solution 2. Integratingﬂl)gf‘\fice. Ely = ‘6“’ Y ¥ 2

At O, x=y=0, whti;;t R, x=2l, y=0, Using these boundary conditions in turn, we find

C, =0 and C; =.‘§\§ wl®, as before.
The def'lﬂct}on of the beam at any distance x from 0 is given by -y, The maximum deflec-
tion occu}s at the middle of the beam {x = Iy and is, from 3. .

5wl
. Yot oathy s .
“Ymgx T 24 ET 24 EJ

16. Solve problem 15 if there is in addition a Joad of W 1b at the middle of the beam.

J

. 3 x
y A
— e ] 51 R 2
0 [~ %% - R 2 OI -
' : ) P
wl+ 3 wx Pey) ¥ wl+ 3 ol 5F Rl vial
lexc 2!

Dexel
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Choose the coordinate system as in Problem 15, Since the forces acting on a segment 0P of
the beam differ according as P lies to the left or right of the midpoint, two cases pygt be

considered, .
When 0<x< I, the forces acting on OP are an upward thrust of (wi+ 1¥)1b ut 0, x ft frop

P, and the load wx acting downward at the midpoint of OP, dxft fromP. The bending moment ig
then 1 M o= (wl+ihx - wx(fx) = wix v W - {;wxz.

When l<x<2l, there is an additicnal force — the load W lb ut the midpotnt of the beam,
(x -1) ft from P, The bending moment is then

DM s (wl+dWx - wxn) - W0 = wlx oo 3 - pux® - W ooy,

2
Both 1) and 2) yield the bending moment M = hwl™ + §N1 when x - I,  The twe cages may be
treated at the same time by noting that for 1)

wix +iﬁh:-§wx2 = wix - {mxz- sWil—xy + LW

and for 2) wit+ $We ~ bwx? - Wx =) = wlx = $urd + FWCL-x) + 3 WIGN "Then
TN
2 \J
d \
3) EI&;% = wlx - e’ T AW -x) + M O
with the understanding that the upper sign holds for Dec x < | am}.&?&:;«-r fur tex <2l
. . ) 1 5 1 " l ~‘\:~ 3 1 ? .
Integrating 3) twice, Ely = Ewlx TR -1—2H‘£E—x} - Wiz v Cx v Q.
Using 1the boundary conditions x=y=0at O and x - 21'.)}":0 at g,
Co=— W, 20+ Cy=-dut®s 2upt s L g0 a et -
T e+ G awl+3ﬂ +?§W!z:\.§"\WI’ e Tttt e
1 3 1 1 ':"‘%.
Ely = wly’ - — g o 20 a2 ’ = Hix? ! 5 w0
6 2 N R R L
I S R U T W ;
swlx - -2_4wx _“§\‘l1x - -l-é"'“-xf + Elwtx? - _‘-_1)“-121 + T"-J“'Ii.
¢ &\ i )
and y = & 3 3 ¥ 2 }
(- B-8ln Y TRl LT L TE SRR
\Y;
e o sl H0
e maximum deflectzlo?, af:curnng at the middle of the beam, iy -y - el ' &
’\\‘,. Tav ke 6ETI
N\
A horizontal bg‘airi ‘o’f length [ feet is fj
. L.Deay is fixed
at one end. but “otherwise ungupperted, Ping 7 Y
the equa:itmn of its elastic curve and the / T "
Taximum deflection when the unjif /_____________*x #lox) |
~w Ib/Tt of length, o fond s / ‘[ | :
|
0
Take the origin at the fixed / P |
: end and let / G '
P have cuordmatgs (x,¥). Consider the seg- / ’
TgnthS; Thfzdonly force is the welght w(l- 1) / I
e midpoint : B
e DoInt of PR, $(1-~4) pt from P, // e
dzy
EI—¥ ~w(l-x).4
< 2 -2) = <l g2
| dx . bw(l x) ., Integrating once, EI% = éw(!-xf + C1v
: d
A O: x=0, X< ¢ . _1 3 d
3 .

Integrating again, Ely =

-1 4 1
24 wl-n - Ewlix + Gy,
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i "
At O: x=y=0; then Cp == yl, FEIy = _ 1 ot _ 1 03 1 e
2% ¥ 24'0( x) .swlx+24w£, and

ld 5 2 2 4
= 4lx” - -
y 24EI(_ x 61 x x ).
4
The maximun deflection, occwrring atR(z =1y, is -y, = 1 “’E_; - Note that this is not a
' 8

relative minimum as in Problem 16 but an absolute minimum occurring at an end of the inter-
val 0%x<l.

A horizontel beam of lemgth 31 Feet is fixed at ome end but otherwise unsupported, There is
& uniform load of w 1b/ft of length and two loads of I 1b each at points ! and 2! ft from the
fixed end, Find the equation of the elastic curve and the maximum deflectiam

N
7 Y ¢\ :. N
/ x T p— o\
2l-x N\
O’
$(31-2)

. m\j
/ ) (31—.1:)1&./ H'I'r ((slix)w N

N\
o)
¢ L\

A

Take the origin at the fixéd)end and let P have coordinates (x,y). There are three cases
to be considered according.as.’ﬁ is on the interval (D <x<l), (l<x<2D), or (2l<x<3ly. In
each case, use will be made’of the right hand segment of the beem in computing the three bend-

o v/

ing moments, )

When QG<cx< i (P‘\p! in the figure), there are three forces acting on P R: the weight
31 —xyw 1b tak;{;gt the midpoint of PR, 3(31-x) ft from P,; the load ¥ Ib, (I~x) ft from
P,; and th 'Iéad W 1b, (21-x) tt from Py, The bending moment about P, is

4

2
M, = -3l yweh(3l-z) — W(l-x) - W2l-2) = - $uw(3l-x) - W(l-x) - W(2l-x),

2
e EI d_y = - ﬁ-u.n‘f:?l—:c)2 - Wi-x) - F2l-x.
2

1 3 1 _of s Lweteny? - cy.
Integrating, EIE{J = Ew(3l-—.‘r) + ZW(I xy + 2 ( X 1

dx

9 5_§ 12

At O: x=0 and dy/dx = 0; then Ci:'ﬁ‘”l 2W ’
5 2
1 2, 1 oo 2.0 2 2w,
- 5,2

and 1 3 1 e - 2.8 - 2wl G
Ely = _?tw(sl—x)“—gw(l‘x) - 61!’(21 o 2 2

27 4 3,3 d
At O: x=y=0; then C; = -S—wl + WL .a.n
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27
8

1 3 1 38 3 3.2 gy 3
A Ely - -%w{Sl-x)“-EW(I-x} —Ell'(2!-x) - zwix 2&Ix+ el s ?‘2”5'

When l<x<2l, (P=F, in the figure), the bénding moment about I is

My = ~ im(3l-x)2 - K2l -x),
and d2 3 _
ET2Y - _4u@al-x) - W(2l-x). Integrating twice, we obtain
da?
BY Ely = - -:;iw(ﬂ—x)“ - %mi-x;’ ¢ Cox + Can
d . . .
¥hen z = |, B') and A) must agree in deflection &nd slope Ey 80 that €, ¢y and 7, - C,, Thus,
1 ¥ 1 3 ] L] 5, ,2 29 4 3 .
T - - - - - - = K _— { v = R
B Ely 241&'(31 x) Bll'('ﬂ x) 2|u£x 5 Fx = v 5
L\ 2
When 2I<x<3l, (P=P, in the figure}, the bending moment about P, ISy - seal-x)°,
2 ~\
and EI d—% = - iw(‘\il—-x}!. Then O
dx x',\\ }
O Ely = - 2w@l-n' +Cex t Cs = - S udloxy 8oy - Shite . o, 3y
_ 24 24 2.7 2 B 2
since, when x =2/, there must be agreement with B 1n'd§{\f’ection and slope.
A), B}, C) may be written in the form g\;‘;
. _P 3 22 " WA ‘.’"5 2 ..
Y 2451{1“" S4Ux" - x7) + ’ﬁ;(h - 9%y, “x 7,
= b 3 22 ’f:';
BT i _'x\“) ) 6:1(’5 -8’ s v 1%, Lexgal,
)
¢\
= o 3 227
Ty i Al LE RN 2—;}(31’ - 5i'xy, 20 < x ¢ 3,
The maximum deflecifi?rfyoccurring at R (x =30, is Ve Ei‘}(sl“'tu . ag k).

" \_‘. .
Qte tha.t the el“ 1¢ curve conEllStS Uf arcs Of thl'ee diatinCt
'\

curves, the slopes of each
ction polnt being equal,

e \ W
\ ™

$wl ox P ///A

beam and let P have coordinates {(z,y).

upward thrust of yw!lb at ¢, x ft from P;
of OP, 4x ft from P. Thus,
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22
EI;; = K+ duolx — hug?

Integrating once and using x=0, dy/dx=0 at O, Y . Ke + Ypp? o 10
dx T8
At R: x =1, dy/dr = 0 since the beam is fixzed there, Then
1 .3 1 .35 1 d:
KI+ZWI - =wi’ =0, Kz_l_ZwI_ and Efayz _le_wlzxq-iwlxz—lwa.
Integrating and using x =y=9 at O,
1 22 1 3 1y
Ely = - w2 + —wil’ - —y and = 2L
2% 12 TR 4 24EI(211 F-.
4
The maximum deflection, occurring at the middle of the heam (x = §1), is ° a —M— .
: ). i8 Yeor T 577

3
N 3
o

\? P

20. solve Problem 19 when in addition there is & weight W'1b at the niddle of the beam.

2'\\

W

y SO

\)
o

7

N\ )

M

e e
X 0 .“‘"“ ' RI™N, x
///// P1 "\\ X l—T/f %j
swlivhy % A Y i+ )
¢ \J

%

L >

A/ .
Using the coordinate.system of Problem 19, there are two cases tobe considered: from x=0
tox=%! and from x-«xiil tox=1I,
When 0<ax< %1, 'he externa} forces on the segment to the left of Py (x,y) are: & couple of
unknown moment & at O: an upward thrust of s(wi+¥) 1b at 0, » ft from P,; and the load wx

1b, %z ft fmm}’ . Thus,

2, %Wx.

1 1 i
EIdy = K+ %(whﬂ’)x-awxz = K+ :—zwlx—iwx

Integrating once and using x=90, dy/dx =0 at 0,

d 5 =
1 ay _ - - + Wx .
Al EI = Kx + wlx GM r
Integrating and using x=y=0 at G
1,2 1.3 Lo 1yl
4) Ely = EKx + ﬁwlx il T

When 4l<x<l, there is in addition the weight ¥ 1b st the middle of the beam, (z - 31

ft from P,, Thus,

- a2 ks lm‘.x _ lmz +' El’wx - ¥x - 3D, Integrating twice,
dxz
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21.

1 5 3 = ol
! g2 1 wix’ - -}—wx“ + —1- Wl - EW(; S 12 R SR o
B") By = 38+ 3 2 12

i -hase for A), Thyg
1y must agree respectively with t .
f y and dy/dr for B')
When x = 51, the values o
C1=C;=0 and

B) Ely = %Kx2+%wlxi-§12wx“+-ll—zli’x’-t—;ﬁ'(x—il)".
To determine K, use x-4$l, dy/dx=0 in A'), Then
% X + Tléwla - Z%wla + %Slﬂ2 =0 and K=~ -1-1-2-1»!2 - %Wi. Substituting in A) and B),
Ely = —-;Zwlzxz + -i-l-éwlxs - 2—];!:9::“ + 1—12 e - T%H’lxz st
Yy = %(2&5 - 152 -x“) + 481‘.‘1(“5 - 3!:2), 0 < :: :f\\i‘i,
Bly = - 5ol + Sl - T é»:un‘ - SHat e
Yt @ - el j.\f{ir\’ S TR

\

A 2wy,
The maximum deflection, occurring at the middle of the Géam, 15 (wl ¢ )

TYasr T 3gd T

2O
o\ ) end,
A horizontal beam of length [ ft is fixed at ong“end and freely supported at the :U;e;ength
(¢) Find the equation of the elastic curve 4 the beam carries a uniform load « lt:/rlo_ Lenkth
and a weight W Ib at the midd]e, '¢)] Loc'a'i;é the point of maximum deflection when I =
¥ = 10w, L
K\
7 ¥y ¢. LN\
7 A " .
.\ »_..'__.__J‘,.(l_x)____, el — X e —ad
S0 K-z
%w e
ZN R x
/) K P’_ ' +-——
/ P, §
w( CU-xw  (l-xw
“Ynax,
Take the origin at the fixed end and let P have coordinates (x,y). There are two cases to
be considered,
£
When 0<x< 41, the external forces acting on the segment PR are: an unknown upward thr;s.
S ab B (1-x) £6 from Py; the load w(l gy 1b ag the midpoint of PR, $(I-x) ft fron Py
and W 1b, (51-x) ft from p,, Thus,

2
Erdy .
dx?

Sl ~x) - o(l-%)d(l-x) ~ W3l-x) - S(L-x) - $w(l-x)7 ~ W(hl-x).

Integrating pnce ang using z =0, dy/dx = ¢ at 0,

dy 1 2 1 1 ,,2
EI = - _ g 3 1 2 1 .2 1 3 .
; 3 (l-0)° 4 -6 w(laxy 5 H’(H—x) + 53; E wil”’ - 3 Wi



APPLICATIONS OF LINEAR EQUATIONS 151

Integrating again and using =« =¥:0 at Q
»

_ 1 3 1 L |
A) Ely = oSU-2 - (e’ - ~Wg1-n’+ dai? - 1,5 Tty _ ls? Lo, Lyp
6 2 6 8 6 2 43
When 3l<x<l, the forces actin

g on P,R are th
From Pz and the load w(l ey 1t € unknown upwerd thrust .S at R, (l-x) ft

s $(1~23 ft from P,, Thus,

d> 1
ET &x—z = S(l-x) - Ew{l—x)z and
I _ 1 3 1 4
BY Ely = ES(l—x) - -ﬁwfl—x) + Cix + Cy,

d
When x = I, the values of Ely and EIR% as given by A) and B") must agree, Hence, C, and C,

in B') have the values of the corresponding comstants of integration found im determining 4),
and B") becomes : \\
B) Ely - —S(I-x) - —-w(qu} ‘G Yo _ —wl - -wz Yo - Esz‘ ) -1.. wi* 413’”3'

To determine S, use x=1, y=0 at R in By, then 8§ = —m{-& —~W Meking this replace-
ment in A) and B),

\
w 3 2 2 4
= -l el — -
Y o= mpp Gl -8l - mh e El\(um 9lx), 0 <kl and
¥ = —(513: - Z —2x)+ ‘W (213—12!'..1:+15Ix -5::5), sl<x <,
48 ET 96 £1 S

s’~

It is clear that the maximum def]ecb?ioh occcurs to the right of the midpoint of the beam,
When =10, W=10w, the equation \eugmedlately above becomes

N

¥ = —-A( 2:: + 25x + 450.7: — 6000x + 10000).

43 EX
Since z—: = (0 at the point\o.f maximum deflection, we solve
N 5 2
A\ 8 ~ Thx - 900x + 6000 = D

o

for the reail roo‘t\}: 5.6, approximately, Thus, the maximum deflection occurs at the point
approximetely.$.6 ft from the fixed end.

0'\‘
\ 3

ELECTRIC CIRCUITS.

99, an electric ecircuit consists of an inductance of 0.1 henrri. a resistance of 20 ohns and a con-
denser of capacitance 25 microfarads (1 microfarad = 10 farady, Find the charge g and the

current i at time t, given the initial conditions (@) g = 0._05

coulomb, i = dg/dt = O when t=0, (b) g = 0,05 coulomb, 1 = c-25x10"f
—-0.2 ampere when t=0. ==
-6 )
SiHCE I = 0. 1' R = m, C = 25'10 ) E(t) =
-
’ -
di? e =

Ieduces tD r2 I 0
,] + 2“” —_ + 400’000q B"'.- 20 Oh.ms
df
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Integrating, g = e mOt(A cos 100 V35 ¢ + B sin 100 V39 1),

Differentiating once with respect to t,

. 100 e °%% [(/35B - Aycos 100/38 ¢ - (V39 A + Bysin 100/35¢],
dt

0.05
initi = L = =0, A =0,05% und § -
a) Using the initial conditions ¢ = 0.05, i = 0 when t=0 =

Hence, g = ¢ %%0.05 cos 62¢.5¢ + 0.008 sin 624.5¢)

and § o= -0.32¢ % sin 624.5 ¢,

—— = 0.008,

&) Using the initial conditions ¢ = 0.05, i = -0.2 when ¢t=0, A - 0.05 und 8 - 0,007].

Hence, °°t(0.05 cos 624.5¢ + 0.0077 sin 624.51¢t)

and i = e-100t(__ 0.2 cos 6245t - 32.0 8in 624.5¢) \\

Note that ¢ and i are transients, each becoming negligible very qlnir{l:y.

A circuit consists of an inductance of 0.05 henry, a resist- ,x’,\\ E =100V
ance of 2 olms, a condenser of capacitance 100 microfarads, -\ = _ i .“I
and an euf of E = 100 volts, Pind i and ¢, given the initjel™ LIL]|

conditions g=0, i=0 when t =0. \\

W

- 0.05 h
WA

L

\
2 &N

2
NS
Here 0.05 u + 20 gg + 9 = 100{. N
dt a p0.10
dq dg N
ar — + 400 = + 200,000 =_%2000,
de2 at 0,000 R :9000

'\ —&
-200¢ - _ »
Inteerating, q = e = (4 cos@‘t + B sin 400t) + 0.01. C-100x10f
Differentiating once with ;eépect to ¢,

. dg
dt

=300t O
= 200e [ ¢-A + BYebs 400t + B -24) sin 400t] .
.'\m
Using the 1nitia{§9ﬁditions: A=-0.01, -A+2B=0, and B - - 0.005.
Then i\ - “200¢
RN\ @ = e (= 0.01 cos 400t - 0,005 sin 400¢) + 0.01

A\ . 200t
and \/ t = bHe sin 400t,

Here i becomes negligible very soon while ¢, for all purposes, becomes q = 0.01.

Solve Problem 23 assumi;

ug that there is a var
E{t) = 100 cos 200t, iable emf of

The differentia] equation is pow ~
2
dg dg
— + 400 =2 . =
5 + 200,000 =

de? 2000 cos 2g0¢, Then

0.05h
Wy

=200
= e

(A cos 400t + B gin 400t) + 0,01 com 200t
+ 0.005 sin 2g¢ and
200 it
[(—2004 + 400B) cos 400¢ + (-2008 - 4004) sin 400¢) " b
- 2 sin 200¢ + cos 2001¢, C=100x10"f

L

20 ohns

1}
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Using the initia] conditions: 4 - -0.01, -2004 + 400B+1=0 and B = —p 0075 Then

=200t
7 = ¢ (- 0.01 cos 400¢ - 0,0075 sin 400%) + 0,01 cos 200t + 0.005 sin 200¢

d
an -2001,

i = e cos 400t + 5,5 sin 400t) ~ 2 sin D0t + cos 200t.

Here tr_'e transient parts of g and ; VEry quickly become negligible, For this reason, when
the transients may be neglected, one heeds find only the stesdy-state solutions
7 = 0.01 cos 200¢ + 0.005 sin 20p¢ and i = cos 200t — 2 sin 200t.

The frequency 200/2n cycles/sec of the steady-state solutions is equal to the frequency of
the applied emf. (See also Probien 25.)

a capacitance €, and an emf E(t) = Egsinwt, derive the
formula for the sterdy-state current

po= gz—q(g sin wt — g cos W) = %‘1 sinwt - 8y,

where X = Lw ~ —1». Z=vX" +R, &nd9 is determined
Cu N

INY
X R £ &/
from sin@ =2 and cos 9 =2 . 2\
4 z :',\\:
2 o\ E=Eg sin wt
By differentiating L ﬂ + R ﬂ + g 0= Ey sinet
dt? dt QN
and using i = g. we obtain ~
A
d¥i disly 2 .
1) LE2 o R 2N - ap?+RrD+ 0y - wEqy cos wi.
dt? & C

.’\’.'“
The required steady-s‘bété solution is the particular integral of 1):

o W/
£\

1 '§——-—L'-JEL—— cos wt = Lcos wt
RN 2 : _ i
m:..\;. LD" + RD + 1/C RD ~ (Lw Cw)
V
= “_’_‘E_O.Mcoswt = -_E"_-E(R slhnwt - X cos wt)
R - x%? R + X
= EQ(& sin Wt - ’Icoswt) = &sin(wt-e).
B Z z Z

X is called the reactance of the circuit; whem X = 0, the aml_llitl_lde of { is greatest (the
circuit is in resonance). Z, called the impedance of the circuit, is also the ratio of the
amplitudes of the emf and the current. 6 is called the phase angle.

At times ¢t = M/2w, 3M /2w, ++++++ the emf sttains maximum amplitude, while at times given
’ r/2+8 , '3.—“/-{%:-2’ «rexs« the current attains

by wt-6 =2, gn/z, «=«+++, that is, when t =
naximum amplitude, Thus the voltage leads the current by a time 8/w or the current and volt-
age are out of phase by the phase angle 0.

Note that @ - O when X - 0, that is, 6 = 0 if there is resonance.
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'26. The circuit consisting of an inductance L, a condenser of

E - Focos we
capacitance C, and an emf F is known as an harmonlc oscil-
lator. Find g and t© when £ = Ejcoswt and the initial con-
ditions are g=qy, 1 =iy when {=0.
Since R = 0, the differential equation is i C
2
g, 9 . F_"cos wt,
dt?  CL
There are two cases to be considered:
1 1
(&) w ¥ — and (b} 0 = ~—.
v L vCL
1 1 Eo 1 "
a) g = Acos — ¢t + Baln —t + 0 e ™ conwt
/CL /CL Eptvwva N
= Acos ——t + B sin ——¢ + --i“-‘-’:‘—co.-suiz} i
vCL vCL I-w' Gl Al
K7
and 1 = "‘!—("A SinLt + BCOS —-1—.t) ;:3_}‘04 sin e,
vCL vCL vCIL N\ 1-w ],
# P\
. Ny EoC ¢
Using the init#al conditioms: 4 = g, - —2—~and B - /CLa,.  Then
1-w CJ;\“
E ";’.’ . PN
7 = (g, - -—-izq—)cos e o VEL ig 8in ——t » ol it
I-o'CL LN an 1-wiel
d L = 1 KO EqC 1 EaCw
an O g cos —t —f(qo— ~—)sin —¢ - ;O{;‘—-—sinwf.
/CL ML 1-w'CL /& 1-w €L
&2 , P
b) Here e —‘g t g = 2 coswt,
N de L
po &/
O
Then "!\\3 Adcoswt + B sinwt + ___EO ¢t sinwt

A\ 2Lw

and \; T = (-4 sinwt+Bcoswt) + gf(é sinwt + ¢t cos wt),

Using the initial conditions: 4 - 9o and B = §_/u
ol

Then = o E
g %o COS@E + L sinwe 4 °m t sinwt

and : 3 i
i fo COSWE ~ q.w sinwe + I-S:E-f(-ls-.inmt + t cos wt),
2L W
Note that in (b) the fre

is, the frequency when ther

) I
Lw-—= -0 yn =
o en i

quency of the emf ig the

; netural frequency of the oscillator, theb
e 1S no emf,

The circuit is In resonance since the reactance X =
The presence of the term git- cos Wt
2L ]

CL
» indicates that eventually sych g cireuit will pe destroyed

whose amplitude increases
with ¢
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28.

28.

30.

31.

32.

%hen the inner of two concentr o.spheres of radii rq and ry, Ty

A spring is such that it would be strete

a) pulled down 4 in. and released.

Ans, a)x=§cos4/§t. by x = 3
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SUPPLEMENTARY PROBLEMS

Determine the curve for which the radius of curvatnre is proportional to the slope of the
tangent,

/2_—2' -
Ans. y =+ {(VE -(x+C))" + k1In R - (x4 Cy) "k) + C

2
x+Cy

A 6 inch pendulum is released with a velocity of 1/2 rad/sec, toward the vertical, from a po-

sition 1/5 rad from the vertical. Find the equation of motion.

I 1
Ans. 0 = - cos 8t - — si
5 8 lssmst

~N

A particle of mass m is repelled from {} with a force egual to k>0 times'\bhe distance from

0. If the particle starts from rest at a distance ¢ from 0O, find its position t sec later.

Viin t Ye/mt ®
(e + b

Ans. x = %a e D
7%3

2D
If, in Problem 28, k=m and ¢ =12 ft, determine o) the disiance from (> and the velocity when
t=2 see, by when it will be 18 ft from O and its velocity/then.

Ans. @) xz = 45.1 ft, v = 43.5 ft/secy s ) ¢ = 0.96 sec, v = 13.4 ft/sec

NS
A chain hangs over & smooth peg, 8 ft on cne sigg\and 10 ft on the other. If the force of
friction is equal %o the weight of 1 ft of chain, find the time required for it to slide off.

",
Ans, = In(17 + 12v2) seal\"

/e

p

R\

< rp, carries an electric

charge, the differential eguation for the potentizl ¥V at any point between the two spheres

at a2 distance r from the.iricbmmon center is
QN
QO dv 24y
"\s. vos D=
o7 a?

O\ -
Solve for ¥ gi\'[e\ V=V, when r=r, &nd V=V, when r=ra.

= 0.

™\
~\J, _ Vorg(r—=ri) = Virg{r—ra)
9, Ans. V = F(ra-T1)

hed 3 in. by a & 1b weight, A 24 1b weight is attached
and brought to rest, Find the equation of the motion if the weight is then
d velocity of 2 ft/sec.

b) pulled dow in, and given an upwar
o o locity of ¢ ft/sec. .

¢) pulled down 3 in. and given a downward ve
d) pushed up 3 in. and releaped.

¢} pushed up 4 in, &nd given an upvard velocity of 5 ft/sec.

1

/3 . ! V3 .
I.os 4‘/5“‘5‘3‘“ 4/3t, ©) x = zous 41/§t+-§~$1n4v§'t.
L1

1 - 5_.‘/53‘ 4v3t
(i) x = — i: cos 4 ‘gii t . e ) £ = -5 cos 4 Vfé t 12 m
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34.

35

36.

37.

38

8

40.
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A spring is such that it would be stretched 3 in. by & 30 1b Wﬂl{zht. A 64 [b weight iy g
tached and brought to rest, The resistance of the medium Is numericully vqual o, g dafdt 1,
Find the equation of the motionm of the weight if

a) it is started downward with velocity 10 ft/sec. ,

b) it is pulled down 6 in., and given an upward velocity of 10 fi/sec.

Vid - 9v ) —
Svid 23 sin 2vid ¢, by x = ¢ 2t( %cos 2vidr - -—,5-{1:1- sin 2viqe )
i¢

Ans. a) x =

A spring is such that it would be stretched 6 in. by a 3 Ib weight. A 3 ib woipht is attached
and brought to rest. The weight is then pulled down 3 in. and released. Determine the equa-
tion of motion if

a) an impressed force gsin 6t acts on the spring, Ans. x =

3 4
cos Bt — —sin e o+ L
7 7

! sin gt
3 ¢

. 3 . 1 R
6) an impressed force 3 sin gt acts on the spring, Ans, x - 4—(1 - 4t)cus .}i\\- G Sin gt

A beam of length I ft is fixed at one end and otherwise URSUPPOLLedeNFd  the cquation of

the elastic curve and the maximum deflection if there is aunu‘ory.,l’o:i'd ol uw Ih 't of length
and a load W 1b at the free end, RS

O . 3
oS (3l + 5K’

¥
sy gl el L Ratoant, Ly 73]

24ET

A heam of length 21 ft is freely supported at both ends}:rhd CRITivs a uniform lowd of u 1h/ft
of length. Taking the origin at the midpoint (low pddnt) of the beum, tind the equation of
the elastic curve and the maximum deflection, Compare with Problem 15,

Hint: EIy" = wi(l-x) - u(l-xy - swl®~xyNand y < y' =g when s - 0.

Ans. y = 26122 x -5‘”4"7"':’
24FT * Yaex T 24ED

. N\
A beam of length 31 ft is freely Suigborted et both ends. There is a uniform loid of w 1b/ft

of length_and loads of W 1p at'.a'\a‘i’stance I ft from each end. Taking the origin as in Prob-
lem 37, find the maximum defdection,

w91l 2 - ! 31 2
Hmt.M-E(T—x)fﬁfgﬁz__x)' §<x<-2—; and M’g(g;——x?) v WL, 0<x<§l-

1 .05.‘.
Ans. Yooy = m&%wlu + 368“"13)
..\

A circuit cnnsi;’.;;; of an inductance of
L copsy: 0.05 henry, a res d ndenser
of capaci 9319&’4(10)"' farad, 1r g=1= " a s 80 2 o0

. 0 when ¢« fj there
is a constant enf - 119 volts, b) there 0, find q and 1 in terms of ¢ when a)

state solutions, in b), 1S &n alternating emf = 200 cos 100¢, Find the steady
- bt 11
Ans. @) g = 70 _ 257 ©08 50 VISt - 11'/i§Sin sovTBey + JL, | . 44VI9 R LY T
4750 250 19
by g = ™0 16 12v1g
17 °%° S0VISe- TTer; Sin 50viSt) + T:_om cos 100t + sin 100t),

; 40
i=e0r 20 1640v1g
(~ {7 ¢08 50/73¢ + g3 %0 50v15¢y o+ :—g(cos 100t - 4 sin 100¢)

Solve P
roblem 39 after replacing the 5 ohm resistance with a 59 ohn resistance

Ans. a) g = - 0,047"5% | 0.0026e 7% | 5 044

5Y ¢ =~ 0.0t ™ |, gse= T
- -53¢ -
098 ™77 L 4,437t | o

U= 2u8(eB L

+ 0.034 sin 100¢ + 0.014 cos 100¢,
45 cos loot

1

i

~ 1.38 sin 100t



CHAPTER 21

Systems of Simultaneous Linear Equations

IN PREVIOUS CHAPTERS, differential equations involving only two variables have been
treated. In the next several chapters, equations involving more than two va-
riables will be considered. If bhut one of the variables is independent, the
equations are ordinary differential equations; if more of the variables are
independent, the equations are called partial differential equations. In this
chapter we shall be concerned with systems of ordinary linear differential
equations with constant coefficients such as

dx dy t o &

2 — + = = 4x -~ y=e \\
o 2D-x + (D-1)y .e;t
A) dx or A') :mt o b J
-_— + 3 +y =20 . (D+3)x + ‘_}‘f,.:-O, where _E
dt \.
A
and . O
dx dy v
+ =+y=1 \
dt  dt ',\"
\Dx + (D+Dhy =1
NN
B)ﬂ ?‘?*2““1 or BIP D+ - (B-1yz = 1
1 t .
N\ (D+Lyy+ (P+2)z =0
ﬂ+d—z+y+2z=0 ,:.’;J’
dt  dt
k'_ p

QN
in which the number of sim@}}aneous equations is equal to the number of depen-
dent variables. N\

THE BASIC PROCEDURE for:sbiving a system of n ordinal_'y diffe:rex_ltlal eq1_1at10ns in
n dependent varidblés consists in obtaining, by dﬁferent}atmg the given equa-
tions, a set frem which all but one of the dependent variables, say x, canfbe
eliminated. The equation resulting from the_ellmlngtlon is then solvgd_lor
this varialglé x. Fach of the dependent variables is obtained in a similar

mAnner # s\

dx dy - é 3x + = 0.
EXAMPLE. Consider systemd4): 1) 2; + i -y =¢€, 2} T + y =0

Solution 1.

First, we note that the genersl sclution x = £{t), y = y(t) of this system will also

satisfy
é + 3E + Q = 0
3 Y 2t ot

i - - and add-
obtained by differentiating 2. Moreover, miltiplying 1) by 1, 2yby -1, 3) by 1,

ing, we obtain

dzx . _ t
4) 3

x = -¢&
dt

hich 1 tisfied by * = x(t), ¥ = ¥(t) This latter differential equation, being
which is also satils = ) .1y thus
free of y and its derivatives, may be solved readily; J

157
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1 LI St + (g sint - Leb,
x = Cycost + Cg sint - n e = (4 co 2 3

D" +1

To find y in a similar menner, we differentiate 1) to obtain

dzx dzy 4 dx d_y .t
5) et Tl Bl il
dt?2  di? dt
and between this and equations 1),2),3) eliminate x and its derivatives. lowever, it is
simpler here to proceed as follows, From 2), we have
. Co Lt
y = & -3 = ~(-Cysint+ Cycost — tety - HCycost v 0y manr o g0hy
dt

4
= (Ci - 3C9)sin t - (3C1 + Cg)cost + 2e,

Thus, x = Cycost+ G, sint - J‘cet, ¥ = (Cy =3CHsint ~ (36~ ff-;)f'%\f C et is the
general solution, ¢\
$)

When the equations are written in the D notation, there is a 'g’gri‘li'lng similarily hetween
the procedures used here and the method of solving & system :a{\n“ﬂrtuinl.iuu:r-. 11 n unknowns,
This is due to the fact, noted in previous chapters, that pQé' operstor fr oy oat Limes be
ireated as a variable (letter). \/

Solution 2. Consider the system A'): 1) 2(D—2);~§(D-—l)y - et
2 DR+ oy -,

N/

Proceeding as in the case of two equatiopﬁ:firi two unknowns x apd ¥y, we multiply 2y by

D-1. Actually, we operate on 2) with B—l = {dit- - 1), to get

cn-\ﬁtma)x +(D-lyy = 0
and subtract 1) from it to obgata.
[(D—l)(D+3)‘—, 2(D=-)]x = ¢t or (Dz+ Dx = —e”.

Now this is 4) above as might have been anticipated, since operating on 2) with 0 -1 is
equivalent to differenpinting 2) and adding -1 times 2) as in the previous solution. The
general solution ii"dptained as in Solution 1,

"\

Selution 3, HI!? :m§:.r also effect a selution using determinants. From system A7) we obtain

RO
AP -1 ¢ D1 AD-2) Doy an-2) o
D+ 'O and y =
0 1 D+3 L D 0
or (D +1yx = _ t 2 t
x e and D"+ y = 4¢

-

The first of.these equations is 4) above, and the second would have been obtained by the
procedure rejected ip Sclution 1, We shail

now show why it i he two equa~
tions are solved, we haye hy it was rejected, When the

= 1 t
6 x Cicost + Cpsint — se and T ¥y = Cycost + (I, sint + 2¢t,
raneous solutions. To eliminate them (that
¥e substitute in 2) and see that
(Ca + 3Cy+ Cy)cos ¢ + (3C3~C1+Cosint = ¢
for every value of ¢, Thus,

Cg = —(3C1+ Ce) and C4 =
When these values are substituted in 6) and
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e NggEgygier{lNDEPENDENT ARBI Y CONSTANTS appearing in the general solution of

£,(Dyx + g, (D)y
£,(D)x + g,(DYy

hy (1)
hy (8)

' £, (D D
is equal to the degree in D of the determinant A = (DY (D

£,(D) &2 (D)

provided A dees not vanish identically. If A = 0, the system is dependent;
such systems will not be considered here.

2(b-2y D-1

For the system 4'), A = = =P+ 1).

D+3 1
The degree (2) in D agrees with the number of arbitrary co

4

in the general solution. AN

O
The theorem may be extended readily to the case of n efuations in n depen-
dent variables. _ \\ 3

7

N
SOLVED PROBLEMS )
Lo

7

o &\
N .
fants appearing

&
1. Solve the system: D (D-Lix+Dy = 2t+1 :\\\\\: :
2) (2D+Dx+ 2Dy = to .

N e
N

W
Subtracting twice 1) from 2), we have &% -3t-2, Substituting x= -t-2/3 in 1), we

i = "\4~‘ . = E 2 ;4..
obtain Dy = 2t + 1~ (D-1)x ',,K\kg and ¥ 2t. +3t+Ci.
¢/

W\ 12 4
The complete salution is JH=zx=-t - 3 77 Et + Et + Gy

D _1 D: N :\¢ ¢: .
Note that x,\{" is of degree 1 in D and there is but one arbitrary constant,
20+ NC2D

Q

ad
NS

2. Solve the systélr\ﬁ ) 1) (D+2)x+ 3y
3
4 2) 3x + (D+2)y

0
Ze

2t

2 2t

Operating on 1) with D+2, muitiplying 2) by -3, and adding: (D" +4D-5)x = —-6e .

1 1 -5t B 2t

- 2t = - = = - + Coe " 4+ —e
Then x = Ciet + Cpe Bt _ ge . From 1}, ¥ = 3(D+2)I Cye 2 =

3. Solve the system: 1y (D-3yx + 2(D+2y = 2s8int

2y AD+Lx + (D-1y = cO8 t,

y with 2(D+2), we have

(D-1[2sint] =

= 2D+cost = 4cost -~ 2sint.

= (b+2(D-1), since the ogperators

Operating on 1) with p-1 and on 2

3 (D-1y(D-3Hx + AD-1(D+ Y

Dcost ~ 2 sint

4} 4D+(D+x + AD+ D -1Y

Subtracting 3) from 4) and noting that (D-1(D+2)

have constant coefficients,
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4.

[4(02+ 3D+ - (Dz— 4D+3]x

~ht

w1/
and Cie 77+ Cae Sy

3024 16D+ 5

-5t ~1/3

Cie + Cye

From 2}, (B-1y cost +» HD+1)x

8C1 B- ot

4. -tf3
- =G +
3%

Then

¥e

- % Cleubt + l‘ifge'“t‘/5 +

t -t/3

and +

y

o
cost = C,e!' L

f(acle'°* - %Cge-utfj +

SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS

(3D2+ 160 +5¥x - 2 cost

-t/3 1
£

[

86« t

okt

+ {8 sint + cos t) /63,

cos t + BC’le"w - ;;C,e“m - (18 cost + 14 sin t)/63

(47T cos t - 14 ain t /65,

47 cos ¢t - 14 sin ¢t
63

6l sin t - 33 cos ¢ e..ir*;
130 \ ¢

A
i

o &\
e—r)(“\\

N}

L SO

- E 618“5 + Cge
3
Since the degree of A is 2, the general soly
when these expressions are substituted for x an

- - i +
x = Che 5t+C2et/5+ & sin ¢ cost'

65
is the general solution,

3

Solve the system: 1y (D*_2yx 3('\} et

2 eyl o,

Find the particnlar solution satisfying the conditions x-y

Operating on 1) with Di:t.sﬂénhtain D'z _op%
2t o{
=2x+3y+e”” from l\ﬁnd Dzy = -x-2 from 2
N\

Then = ‘@;;’t + Cze't

:..\' -y

}\F} %[(D2—2)x - e%}

x

1 ¢
- E{cle

Note that x could also be obteined by the use of determinants,

n -9 -3 ezt 3
2 |1F 7
1 Dy 2 0 D2+2
‘i’l'hent:{], x:Ci+C2+Ca+E:1
5
y =-1(C +Cy -, _ L
3 t 2 3—1—-5 =
Ten Ca= 34, €= s, ¢, = g, Cs = 5
o= i‘(3et+7e"
y =

I .t
- —(3 -
12(8 + e

61 sin ¢t - 33 cos?Ps

+Cacost + C,sine 4 ge“

t 1
)-E{lgcost -281nt)+ge”

¢ 1
)+-16-(19005t_231n”__1_82t

¢ t
v {ae
130 NV

tion has buf* two arbitrary constunts.

llence,
dy in ,l*)}it' 1s found that ¢, . Then

61 sin ¢t - 33 cos ¢t
¥

¢ ~t/5
* Cae 130

=1, Dx =Dy =0 when t 0,

2 2t ) Di
=3D'y=4e and making the replacements x

). we have (D“-l}x = Geu

end, using 1y,

- 2t
+C93t)-fCacost+C.sin:)-l—l_e .
o
Thus,
o (D'-anx - ge?, ote.
and Dx:cl‘cﬂ"‘C4+§ = 0,
1 and Dy=—l(C-C)~C-£=9-
3 1 2 4 15

and the required particular solution is

15
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§. Solve the system: O D+l + (D-1y = ¢, 2) (DP+D+1yx + (D2-D+1yy - 2.

N . 2
Operating on 1) with D" +D+1 and on 2) with D+1, and subtracting, we have

2 £
2y =t + 2t - 3e and y:lt"’+t_§ef.
2

2
: . 2
Operating on 1) with D" -D+1 and on 2) with D -1, and subtracting, we have
2
2x:t—2t+et and x=lt2—t+let.
2 2
D+1 D-1

Note that 2 2 = 2 is of degree 0 in.D; hence, there are nc arbitrary
D+D+1 D -D+1 .

constants in the solution,

.\\'\

\? P
{ )

N/

2 -
f. Solve the system: 1) Dx -mzy = 0, 2} Dzy +ax = 0. {

. 2 o2 (N
Operating on 1) with D° and substituting D'y = -a’x from 2),'\%9 obtain
m

D'z - n¥(-nx) = D'z +a'x = (D'aMHx = 0. Then D - £ 21D

and x = emwﬁ(Ci cos mt/¥2 + C, sin mt/V2) + e'mi/:\@(cs cos mt/V2 + Co sin mt/v2)y,

Substituting for x in 1) and solving, ' \\;\:
N
\ ) -t )
y = _1_2. N = em”’/"?(c2 cos mt/V2 - Cy simmt/v'2) + e utf/2 (Cs sin mt/vV2Z — C, cos mt/v2).
m »,” g

L\ 2
{« Solve the system: 1) (D2+4)x“-\30y = {, 2y 3o+ (D + Yy =0.

T e\ _
Operating on 1) with D +4 Xahd on 2) with 3D, and adding, we have

(D% + 47+ 9D%)x = (D2+16]:(ﬁ'2+1)x -0 and x =C,cosdt + Cpsindt + Cp cost + Cy sint.
\&/

Operating on 1) wii;h\-?,D and on 23 with D"+ 4, and adding, we have
N

(D2 + 16) (Dz+1)y :\'ﬂ\w‘and y = Ky cosdt + Kpsindt + K,eost + K4 sint.

To elimina{e”:t.fhe extraneous sclutjens, substitute for x gnd y in 1), We have

B0 - i 1 i - 3K; sint
¢ i t +3Caco8t + 3(Cy sint + 12K, sin4t 12K; cos4t + 3
12&,@05 4t 1262 sing a 4

for all values of t; thus, Ky = Co, Ko = - Cio Ka = =G Ki=Co

€y cos 4t + Cop sin 4t + Cy cos ¢ + C, sin ¢,

The complete solution is: x

y = Ca cos 4t — Cy 8in 4t - Cy cos t + Cy sin t.

n Dx+ (Drly =1
2) (D+x - (D-12
3 (D+ly+ (D+22

8 Solve the system:

1
.

- i is free of y.
Subtracting 3) from 1), we have 4) Dx-D+2z = 1 which Is free of ¥

Operating on 2) with D and on 4) with D+2,
2= -1yt substituting for z in 3).
2

and subtracting, we have (5D+4)z= -20 then

-4t
(D+ 1y = —(D+2)z = 1 --gCie l+/5; then
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-t ¢ t/ = _ 8C - uth : ~t
y = &° j(et‘ gc,e””m = e (e -6Cie +Ca) = 1-6Ce FoGe
_ 8 -4t/ - 3 e mubs N
Substituting for y in 1), Dz = 1-{D+1)y = 3 Cye : then x 5 (he Ca,
D D+1 0
Since |D+2 0 —D-D| = —(5D2+QD+4} is of degree 2 In [}, Lhere are but two ap-
0 D+l D+2 .
bitrary constants in the gemeral sélution. Substituting for x and z in 2), we obtain
. N 4 =4t/5 1 ~uify mee, (o= 2
(g Cye ut/s - 3Cye 4E/8 + 2C5) - (- 5 Cte n § - Cye y = 1 and, Iu.nf t{,\f.,, 4- Thus,
3 3. -utfs —ut/s -t I S N
x = = ==Ce v ¥y = 1-68Ce + Cpe ’"’5‘:;1‘:
4 2 : N
is the general solution, A\
o ?
9. Solve the system: D B0 x+ 2Dy + 30z = 10D
2 Dx + 2z {-'\B';
3) x - Dy —\‘Qf\. :‘,0.
ONY
Find the particular solution for which x=z=1, "ysl)v when t =0.
.‘::'x
First, operate on 2) with D to obtain Q)’,;:‘sz + Dz =0,
Next, add twice 3) to 1) and subtract, Q‘)"t“o get (2D+3)x = 1; then
'\
stz 1 st/e N 312 1 . -3te
xe = Eje dt.‘{\% LN C, and x o= o Cye
From 2), PR I U, 3 e,
AN/ 2
N 1 - -
From 3y, Dy = « ";‘95.5' = 3 + Cre 3t/2 + %C;c 3t/2 . _]:+ E C, =35t . then
N 3
R\ 1, 13, .5tz
e YT gt gl Ca.
OV w3
; 2
Since L O 1] = 2D"+3D is of degree 21n D, there are 2 arbitrary constants
1 b -p
: . 21 ~3tfe - -35/2
and the gemeral soluticn is 4 - 3+ Cie 3t/ . y= -;-: - ?C;c st/2 Car 2 = %Cv-‘ 5E/2.

When t =0: »x =

[V] A

+Ci =1 and ( = 13, .2 13

i yz(_'E')(g)"'Cg:O and szg'

[Ty N N}

Thus, the required particular solution is

i 2 —3tf2 1 13 - ti2 -
N 17 13 5t/2
x = _3 ‘38 ¥ = "3 t - —e Fo— zZ =g .
Note that a particular SDlutlon sat i v
isfyin i
. , Ying a given set of initia] conditions cannot

j - olution satisfying the conditions z=1, y=z=0 when t=0
imm_a *=1, y=0 ocontradicts x = /3 + 22/3. Similarly =0, z=1, dx d' :y hen t =0 con-
radicts dx/de = -, : r ¥=0, z=1, de/dt =1 when



Solve the foliowing simultaneous equations,
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t

10, Dx - (D+1)y = —&¢

x + (D-1)y

1l. (D+2)x + (D+ 1)y

S5x

12. (D+Dix
- 2x

13. (D-1)x
(D + 2)x

+

+

+

+

14. (0% +16)x
6Dx + (D°

15. (Dz+4)x +y= sin’ z

- 6Dy
+ 16}y

L

2t
¢

(D+3)y

(2D+ Dy =
(D + 3y =

D+3)y =

(D+)y = ¢

L] n
= =

t
e

€

~t
2t

(D"E +1yy - 2x = coszz

SUPPLEMENTARY PROBLEMS

+2

P

+it -

16. D*+D+)x + PP+ 1y =

(D2+ Mx + Dzy =e

7. D-1x + D+2yy =
D+2yy + (D+1)b\\ 3+ ef
h-Dx + (D+ﬁ}z

’“\‘,l

.,\z

\’{_w
..\

3+et

Ans,

]

= (Cy-Cydcos t + (Gy+ Cy)sin t + 3e2°/5

y=Ccost + Cpsin t + 23”/5 + et/Z

= 01"53C2 S.

e 4
it

kL]
Ul

y:

o

y:

E]

ini -

Cicos t + Cysint

2™ feos(e 4 Cy) - sin(t+Co)) -

Cre ™t sin(t+ Cy)

=1tf5 5 2t
2C. —
18 + 173
Scie-rt/a 1 o2t
1'1

3Gy + Gy
5

2
cost —~ ¢t +t + 3

vot —3t-a

€ 13
—_— —
. 26 17
Ze 3 + N\
+ 224 2
13 17 . \\
2
3 )
et s =
7.\&.’; 9
D 1 26
R e | T pp—
QN2 49

PN .
= Cycos 2t ,-\(;‘,a\in 2t + Cacos 8t + C,8in 8i

N\
¥y = Cgcog\ﬂ\\‘twi Cysin 2t + C,cos 8t - Cssln 8t

'»C4dos(/§z +Cy) + Caeos (V3z + C,) + 3 oS 22

163

gt —2C,cos(~f‘z +Cp) = Cocos(vFz + C3) + 3~ 5 co822

X =

y:

x =

~d
1+

(4]
L]

—et—Ze -Cy

Zet + E-t +Cl

£
-1+ tet/2 + Cye

2%
et/s + Cye
2+ et/4 + Cge”



CHAPTER 22

Total Differential Equations

THE DIFFERENTIAL EQUATIONS

A) (3x2y2 ~ e z)dx + (2x5y +sinzidy + (y cos z - e ydz = 0,

B) (3xz + 2yVdx + xdy + x°dz = 0,
() ydx + dy + dz = 0,
being of the general form o &N

N\
Pix,y,z,+++, tydx + Q(X»Y:Z,'“-t)dy toeeaes k S(X,}’,Z,:'j‘,t)(“ =0,

are called total differential equations. S

o

It may he verified readily that 4) is the exact dl{ferent ial of
fix,y,2) = x y - %z + ysinz ,‘\C-
C being an arbitrary constant. Such an equation .15 called exact.
FEquation B) is not exact, but the use otﬁx}aﬁ an integrating factor yields
(3x%z + 2)dx + x%dy '1-\33 dz = 0

which is the exact differential of x"z +x ¥y =€, Equations A) and B) are
called integrable.

~ 3
N
o3

Equation C) is not integrable;* that is, no primitive

1) Q\(x y,z) = C

can be found for it, It w‘ll\l ‘be shown later (Problem 32) that for such equa-
tions a solution 1) can’be obtalned consistent with any prescribed relation

g(x,¥,z) = 0 of the va.nabl
THE CONDITION OF INT RABILI'I‘Y of the total differential equat ion

2) P(x y.z)dx + Q(x, Y.z)dy + R(x,y,2)dz =
is

3 P(i; a},) * O( g—i) + R(g—; - %% =

s

0, identically. See Problem 1.
EXAMPLE 1. For equation By,

3P oP

P=3xz+2y, ~=2, Z-8x; Q=x 2@, 30_. .. 2 3R 3R and
.ay dz Bx L, az_o’ R=x ax = 2x, a—y-o

3) becomes (3xz + 2y

(0 -0) + x(2x — N
is integrable. ) ¥ (2% -3x) +x7 (2 =9

- x* + x2 ={0. The equation

EXAMPLE 2. For equation C),

L 9P
P:Y’ —-_—1 __=0; 3@ Q ®
ay 3z Qlax‘éz 0. R=1, %—%;-0 and 3) becomes

¥{0 -0) +1(0-0) *1(1-0) #0. The equation is not integrable,

lod
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THE CONDITIONS FOR EXACTNESS of 2) are

" P _30 Q0 _3R 3R _ P

3y ox’ z dy  :x 3z

EXAMPLE 3. For equation 4},

P = 3x2y2_exz, @ = ﬁxzy, a_P = - x;
oy dz

Q= 2x5y+sin z, 2 _ szy, E.: cos z;
ox dz

R=ycos;z-ex, ?-E:—ex, B—R=cosz,
ox 3y

and the conditions 4) are satisfied. The equation is exact. \<

EXAMPLE 4. From Example 1 it is readily seen that 4)w<i's;’not satisfied;
hence, equation B) is not exact. O

X
~

g
{

a\ 3
i
TO SOLVE AN INTEGRABLE TOTAL DIFFERENTIAL EQUATION in three variables:
a)y If 2) is exact, the solution is evident aft:er‘,x at most, a regrouping of

terms. See Problem 3. PN
By If 2) is not exact, it may be possib.ley@"find an integrating factor. See
Problems 4-6. o

N/
%

c) If 2) is homogeneous, one variabléjsay z, can be separated from the others
by the transformation x=uz, p¥vz. BSee Problems T-10.

d) If no integrating factor can’b;e; found, consider one of the variables_, say
z, as a constant. Integrate the resulting equation, denoting the arbitrary
constant of integration'by ¢(z). Take the total differential of 1':he 1n1§e-
gral just obtained and\tompare the coefficients of its'differentla%s with
those of the givenfdifferential equation, thus determining ¢(z). This pro-
cedure is illusfrsted in Problem 13. See also Problems 14-16.
"\m
PAIRS OF TOTAL DIF@EE&;MAL EQUATIONS IN THREE VARIABLES. The solution of the si-
multaneous tesal differential equations
5) \\\ P, dx +Qidy+R,dz =
6) Pydx + Q5 dy + Ry dz

consists of a pair of relations
C,
C,.

1]

) f(x,y,2)
8) : £(x, 5, Z)_

To solve a given pair of equations: edty .
i ble, each may be solve one or more o o
” Iioiidﬂgssifﬂf b;;l;nm%%r:ay, is the complete solution (primitive) of
g), and 8) is thé complete solution of ). See Problem 18. |
L. . t, then T}, sa¥, is the _complete s_olut}oﬂ
) 1;‘ 55)) E{' 1213?311:?513? b?é ﬁ;elg)l.lg).'n to eliminate one vsltjrliblle ai%d its dif-
?erel)li:ia? and inteér_ate the resulting equatlon. See Problem 19.

) If neither equation is integrable. e may use the method of Chapter 21,
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treating two of the variables, say x and y, as functlons of the third vari-
able z.

At times it may be simpler to proceed as follows: Eliminate in turndyand
dz (or any other pair) between 5) and 68) to obtain

1Py € O Ry R, P, 0 R
- dz = (), - dy -
P, Q. Q. R, R, P, Q: R
and express them in the symmetric form
de _ dy _ 9‘_5
9 F Z
O Ky Ry Py Py Oy \ AN\
where X = A , Y =K ., Z=A LN £ D
02 R2 RE Pﬂ P2 Qd :j N

{(Note that this is the procedure for obtaining t,l@”"»symmtric form of the
equations of a straight line when the two-plane '\fQ}‘ITI is given.)

Of the three equations 4
gly. _ Ydx = Xdy, Xdz = Z@, Zdy = Yud:

given by 9), any one may be obtained froln t‘fle other two. Hence, in obtaining
8}, we merely replace the original pgi?:‘,of differential equations by an equiv-
alent pair, that is, any two of 9\)a)°

If two of 9') are %ntegrablq;;’% proceed as in e). See Problem 20.
If but one of 9') is integrable, we proceed as in fy. Sec Problem 21.

~ If no one of 9" is integ'\:'able, we increase the number of possible equa-
tions. By a well known p;:\"lhnple,

\
ié‘_:Q:.CE.:ﬁdx+m1d}’+ﬂ1dz=£2_dx+m2dy+n,‘,dz
L AN 2 LY+ mY + n,Z LX + mY + m2Z
where the 1-‘%{’;‘31'9 arbitrary functions of the variables such that
O X+ a¥ + nZ £ 0.

By a prepér choice of the mu

43 ltipliers, it m i in an inte-
grab% Suation. say ay be possible to obtain an in

dr _ ldx+mdy +ndz or 3 +bdy+cdz pdx + gqdy + rdz
Y IX +m¥ t nZ aX + bY + oz .

pX + Y + Z

If so, we proceed as in fy. See Problem 29,

In actual practice, it may be si

pliers a second integrable equati
Problems 23-24, et

mpler at times to find by means of multi-
on, rather than to proceed as in f). See

It 1X+mY+nZ=0, then also 1dx+mdy+ndz=0.

If now Idx+mdy+ndz=[} is i .
the required relations, See Préﬁlelezgeg:gée' *e integrate and have one of
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SOLVED PROBLEMS

Obtain the condition of integrability of Pdx+ Qdy+ Rdz =

D‘

Suppose that the given equation is obtained by differentiating

l) f(x!yl z} = C
and, perhaps, removing a common factor px,y,z). Since from 1} g dr + B_f dy + B_f dz = 0,
dy B2
: af - of : 3
it follows that - = uP, o . d of _
3 - 3 #Q and = = uk,
Now assuming the existence and continuity conditions,
2
3 ?& 0, x . Bf LN
A) = —_— P = —_— . _ = ¢
dy ox “By “aa+oax Bx'c}y\\
2 2"..':,
af 30 3 3 i
By . K e - X Lpa -
~dz Ay # 3z ¢ Oz # Oy Ay .\u.";ay 3z
2 2.\
9f M, oo P oW IF
C = R —_— = — = -
) ox Jz M 3 o9x . * 32 $ P~ oz dz Ox

Upon multiplying these relatmns by R,P.0, respec.tﬁely and addlng,

BQ 3P

P
R= P = + Q)
14 3y + + Q ) By QBz
and the condition P(a—Q - ——) + Q(aﬂ“— —) * R(a—P aQ follows,
- ER \\Bx dz 9y Bx

o)

¢ N/
- If p(x,y,2) = 1 in Problem 1, ’1% differential equation is exact. Show that this lmplies

o0 w_w B
'a_y_'ax 9z  dy W Oz

x\’
. oF _
These relatlons\\f\ollow trom A),B),C) in Prob, L. For example, 1f u =1, AY yields 5 " %
\ \
Solve (}\,})dx -xdy + 2dz =0,
since P . 4.0, X.,- R R _ g . % the equation is exact.
dy B x 9z Oy ox 9z
Upon Teerouping thus xdr - (xdy+ yde) + 2 de=10 and integrating, we have
2
’lfxz-xy+%22=K or A ~uy+z =G
Solve yzdx—zdy+ydz= 0
R oR
oP . = — :a_Qz —-Q:— R=y, — =0, —=1
Here p:yzl %.E:zy, §;=0. Q=-% 3% 0, 3 ax oy
3 R R BP E.P_QQ Z W2(o1—1) =z{0 -0) +y{2y-0) =0 and the equa-~
then _Q_ A, Q( ) + R(ay Bx) ¥
Ay ydr~zdy
i 2 uation to dx+ ———= = 0 whose
tion is integrable, The mtegl‘atlng factor 1/y" reduces the ed ¥

solution is x + zfy =
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2 -
Solve (2'y+1)dx + xtdy + x° tanz dz = O,

The condition of integrability is satisfied since 5 5
2 -
(23y +1)(0-0) + x'(2x tanz —0) + x” tanz(Z’ -4x’) - 0,

The integrating factor 1/x? reduces the equation to

X

2 1 an .
(2xy + iz}dx +x%dy +tanz dz = 0 or  (2ayds+x dy)+ gl tmedi o
x

. 2 1 ,
whose solution is =x°y -~ : Insecz = C.

Solve (sz—z)zdx + 2xzyz dy + x(z+x}dz = Q.

~

"\

The normal procedure here would be to show that the equation is lllll:gl:hllv und then to seek
an integrating factor, By examining the preceding problems it will p’(( sound  Llwt, upon using
the integrating factor, one variable appears only in an exact di{fgmmt:ul. for example, the
variable z in tanz dz in Problem 5, \\»

¥hen the equation of this problem is divided by xzz. the y{rltahle ¥y Bppears only in t_,he term
2y dy which is an exact diffefential. Thus, we shall use 1}’;31 as a possthle anteprating fac-
tor. The result is 2rdx + Zydy + ldz + zdz-zdy O Wiose solution is 2%y 37 s lnzs 220,

' z o2 e, x

Of course, the separation of the variable here‘ddes not indicate that the ciual ion is inte-

grable; for example, xdv+zdy+dz=0 is not, infegrable although x appears only in an exact
differential, N\

X
<N

Show that if Pdx+Qdy+Rdz=0 is_hombgeneous (ice., if 2, 0, R are homogencous and of t].1e
same degree} then the substitutiun§x=uz, y=vz will separate the varinble : trom the vari-
ables u and v, )

Let the coefficients P, Q,ﬁ be of degree n in the variables,

Substituting x =aug, ¥ #¥%s the given equation becomes

. QN
P{uz,vz.z)\[u’dz+ zdu] + Quz,vz,2) [v dz+ zdv] + A(uz,vz,2)dr = 0.
Dividing out th(éig)ﬁ}ncn factor z" and rearranging, we have

A .
lfp(l{m}l- Ldu + Qeu,v, Dedv] + [wP(u,v, 1y + vQ{u,v,1) + R{u,v,1)]dz = 0

or ~O #(Pydu + Qudv) + (Py + vQ, + Ry)dz = 0, where Py = Pru,v, 1), etc.
) ;
This may be written as A) it du + 2! dv + 1dz = 0 in which
uPy + 90y + R, uPy + vy + R, 2
the variable z occurs only in the last term,
Now the condition of integrability for 4), 12 & 9 i y =0
Zz

auupx’vai*' Ry qér’:“;’i # vl
ginal equation is integrable and,
xact differential,

is satisfied provided the ori when this occurs, the sum of the
first two terms_, of 4) is an e Moreover, since the third term is an exact dif-
ferential, A) is an exact differentia] equation provided only that Pdx + Qdy + Ridz =0 18
integrable, )

Solve the homogeneous equation

2y +2)dx - (x tzydy + (2 —x +zydz = @,

The equation is integrable since Ay+ay{-1-9y - (x+2)(~-1-2) + (2y-x+z2y(2+1) = 0.

reduces the given equation tgo
2z(v + 1) {u dz + z2du) - z(u+1y(vdz+ 2dv) + z(w~u+ l)dsz

The transformation Tuz, y=yz

= 0.
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Dividing by z and rearrenging, we have 2z(v+1)dn - z{u+ 1)dv + (uw+u+v+1dz = 0 or,

dividing by z{wv+u+v+1) = z{uw+ (v +1), ....__Zd“ - _._d"' + i{ = 0
coudl v+l z
Then 21In(a+1) —In{v+1) + Inz = Ink, z(u+1)2 = K(v +1)

2
(x+2) = K{y+2) or y+z=C(x+z)2.

0, Solve the homogeneous equation  yzdx - 22 dy - xydz = 0,

The equation is integrable since  yz(-2z +x) = 22 {-y-¥) - xy(z-0) =
The transformation x -uz, ¥ =vz reduces it to

vzz(u dz+ zdu) — zz(v dz+ zdv) - wwz? dz = 0.

Dividing by 22 and rearranging, vedu—zdv—-vdz=0 or du-— @_\\d_z =0,
JEN %
Then u-1nv -~1lnz =InkK, wvz=Ce or y= e, O
PR
10. solve (2y—z)dx ¥ 2(x =z)dy — (x +2y)dz = 0. N\

The equation is homogeneous and, by inspection, is SQQQ to be exact since it may be writ-
ten as Aydetxdy) - (z dx+xdz)\:-.\ﬁ(§’dy+ ydz) = 0.
S ]

The solution is 2wy — zz — 2yz = G, U

11. Show that xP + yQ + zR = €. is the sofi,{ﬁion of DPdx+ Qdy + Rdz = ¢  when the equation
is exact and homogeneous of degree n ,‘\ 1,

First, we check the theorem l@'ng the equation of Problem 10. Here

xP + yQ + 2R(H x(2y-2) + 2y (x - —2) - z(x+2y) = 2(2uy-xz-2y2)

and we obtain the solutiﬁn above.

20 .
From xP + yQ +;zﬂ{«= ¢, we obtain by differentiation

P oQ oR
3P N 'a'_R +xa_P+ a_g+za_§]dy+(3+x-—+y—+z—-)dz=0.
A) (P”af?ax”ax)d”m w T % T8z oz
3¢ % W _¥ R _0Q
Since the given equation is exact, = B_y, % 9y oz
Making these replacements, A) becomes
30, . 3 R, R, Ry
B} (P+x§+yg—‘:+zgp)dx+(0+x§9+y-—-+za)d}'+(H+xax yay aZ)z
opP ?‘_D 3_P = nP, ete., according
Since the given equation is homogeneous, x 3r Y Iy vz Bz T

to Euler's Formula on homogeneous functions.

Making these replacements, B) becomes

(n+1)de + (n+1)Qdy
pde + Qdy + Rdz =0

+ (n+1)ﬂdz =0

or, since n # -1,
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2, .2 .
19. solve (y%+2%+ 2y + Zz)dx + (v 2y +22)dy + (2 4y + 202+ 2p2)dz = 0.

ince
The equation is homogeneous of degree 2 and is also exact s

ap
30_ =-¥. a—ﬁ=2(:¢+z) o2
2 2
The solution 13 z(y?+2% + Zuy+ 2xz) + yixle 2y e2yny v 270y v 2en s yy = K
2 2
ar x(y2+zz) + y(x2+z2) + z{x +y ) =C.
18. solve the differential equation Pdx+ Qdy + Rdz = 0 given only that the condition of in.

tegrability is satisfied.

N

Consider one of the varisbles, say z, a8 & constant for the moment .gn let the solution of

the resulting equation ( v
1} Pde + Qdy = 0 A\ W
be O °
2 ¥(2,Y,2) = Pl2)e N
PBifferentiating 2) with respect to all the variable\s..
£ '\ n/
ou ou du C§
—dx + —dy + = dz_a (z)d: = d¢,
B ‘ox dy Y Az '\‘:qﬁ

Now %ﬂzp and %—uﬂ;Q. where u s{ifx,y,z) 1s en integrating factor of 1), Substi-
i y

tuting in 3), we have uPdy +';quy + E—‘ d: = d¢,
..\\ az

XAY
But from the given equatiof \ xPdx + #Qdy + uRdz = 0 so that

\ 9% - g—:dz - pRdz = (2 upyae,

9z

dy and, using 2) if necessary, can be written as a differ-

This relation J{ﬁ‘ée of dx and
Rg the integral for ¢ and substituting in 2), we have the

ential equation"{n\ and ¢, Solvi
required solution,
T

14. Solve §y+z)dx = (x+2)dy + (2y-x+2)dz = g, (See Problem 8,)

We treat z ag g constant and sglve

2z
2(.Y+z)dz-(x+z)dy=0 or j—i 2 Y= vz’

using the integrating factor e-zfdx/(x +2) = -—-1—-_. + to obtein
(x+ 1_)2

A —-_y.._._ f___z_f___ dy = _ z
42y (x+2) P + P(2).

Differentiating A) with respect to all variables,
dy y d

an? o gldmedy = L& 2%

(x+z)2 (:\:+z.)3 {:\:+z)2 ' {x+z)5 (dardo) + “
or Ay +2)dx - (x4 2)dy + (2y
Comparing this with the given equatjon,
Since, from 4), y+z = Dix + 22,

—x+2)dz + (x+z)5dq5 = 0.

it is seen that (x+z}5d¢r =0 and ¢ =G,
the solution jg Y+z = Clx+23y2,
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19. Solve €y +e*ydx + (%7 +e)dy + te? -y _eVydz - 0.
The equation is integrable since
eyre®y(e— et ¥t 6”2y + (Vrt ey (e¥y —efy 4 (7 e¥y— ey (¥ - ) = 0.
Considering z as a constant and solving the resulting equation
(€"y dx + exdy) + ez dy + e%dx = 0,
we have ey + ¥z + e%x = P(2).

Differentiation with respect to all variables yields

(exy+ez)dx + (eyz+ex)dy + (ey+ezx)dz = d¢.

From the given equation, (e'y+e®)ds + (e”2+¢™)dy + (74 ")z = (fy+ e’z +e“x)dz.

Thus, di = (ex3’+€y2+ e°x)dz = ddz and o = Ce®, The requirec.l’sk\lution is

X z z )
Sy + ¥z + % = 5 o\

16. solve  yzdx + (xz—yzs)dy - 2xydz = 0. *t§\

The equation is integrable since yz(x—3y22+2x} * (xz—yz5)(-2y-y) - 2Zxy(z -z)
Considering y as a constant and solving the resu.lﬁn'g equation
yzde -~ 2xydz = 0 o}‘*;‘: zdy = 2xdz = 0,
2
we obtain Inx - 21lnz = In d,),(y) or x = ¢2°,
® "' g 2
Differentiating this result and meking the replacement ¢ = x/z°, we have
o":‘ . 5
dx—&i:zdz—zqub:U, dx—2§’dz—z2d¢=0, of yzdy— &ydz — y2dp =0,
K\
Comparing this with the giyén differential equation, we have
(xz—yza}dy + yzjd(f): = (qi:z’—yf)dy + _yz;dqﬁ =D or ¢dy+ ydd - ydy = 0.
Then oy - éy’ = ol ¢ = 4y + K/y, so that the solution is
\’ 2 2 2y = 2,2, ¢
(Pt = Ly +K/n or y =¥

{\\M

1%, Discuss gegu@t’f‘ically the solutio

Let (1o,¥o,2o) be & gemersl point in space for which not all of FPo = P(%,%0,%0)
Q(xo,_)’o,lo), RO = R(xodo.zo) are ZEro.

n of the integrable total differential equation
Pdx + Qdy + Rdz = 0.

Assuming that P,Q.R are single :
numbers of 2 unique line through the point.,
thought of as defining at each point {25, ¥o0: 20}

171

%:

-valued, the set (Pgs Qoo Ro ) may be considered as direction
: Hence, the given differential equation may be

. i-xg _ Y-¥o _ Z-%o
a line Pa _“QO‘ Ro
- = normal to the line,
and a plane Polx~%0) + Q¥ =~Yo) + Rtz -20)

The solution f(x,y,z)=C of the given

int {xp,Yo» -
faces such that through a general polm . i he peint is
of the family, The equatiom of the tangent plaze 7o to this surface at the peo

of |
o | (J’-.Yo}%f— + (z-z0)=— = 0
Axp Yo

(x —xa) ¥z0

differential equation represents a family of sur-
2,) Of space there passes & single surface S,
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o _ Y=Y _ 2-2c

X —Xx
and the equations of the normal line Lo_are Y; Y 3

‘Ao é?o- %20
from Problem 1, Zj = AP, Ej_r = A0, ﬁ = AR. Hence, the sclution of an intecgrable tota]
x oy 9z
differential equation in three variables is a family of surfaces whose tungent plane and
normal at each point are respectively the plane and line associnted with the point by the
differential equation.

PAIRS OF TOTAL DIFFERENTIAL EQUATIONS IN THREE VARIABLES.

18. Solve the system: (y+z)dr + (z+x)dy + {x+¥)dz = O
(x+z)dx + ydy + 2dz = 0,

AN
Both equations are integrable. 'The first may be written as (W)

N

(yede + xdy) + (zdy + ydz) + (xdz + 2dx) = 0\

\'\.

N/

and the solution is xy + yz + 2x = Cy,

#
2%4
S

The second may be written as xdc + ydy + (zdx + xdz)’s\0) and the solution is
224 y2 + 2rz = Ca. \\o
Thus, xy+yz+zx=Cy, x° +y2 +2xz =0y constitutq'thé' general sojution,

\

Through each point in space there passes a singfe~~surface of each of the two lamilies,
Since the two surfaces on a point have a ecurve .ziﬁ:cbmmon. the solution of the pair of differ-
ential equations is & family of curves, Thi.g:.’ja.mily of curves may be given by Lhe equations
.of any two families of surfaces passing thr’@ﬂgh the family of curves. For example,

Xy +yz +zx =§.’\.\ %2 +y2 +2(Cy —xy ~y2) = C,
also constitute the general st:;ll.lt'i(ili}"x
19. Solve the system: 1) yz PNET dy + xydz = 0

2) :"é:?(dx+dy) t (xz+yz ~2y}ds = 0,

2

The first equatig} is integrable, with solution N xyr=¢C,

- Py .
Multiply 1By z, multiply 2) by y, and subtract to obtain z2(y —x)dy + y2(z _x)dz = O.
Multiply this by yz, and substitute x¥z=Cy from 3). The result is

but the second is not.

2.2
z(y z=-0dy + yz(yzz..cﬂdz =9 or zdy + ydz - Cx(é-z + ﬁ) =
2
whose solution is 4 + L3 . ¢ ’
yZ 1( yz ) Cg.

Equations 3) and 4) constitute a

. general solution, he
simpler form 4') XY+ ¥z +xz o%. FHowever, 4) may be replaced by ¢

= Gz, obtained from 4) by substituting for C,.

20. solve the system:

dx+2dy-{x+2y]dz=0
2dx 4+ dy+(x—y)dz=0.
Here X=h2 e = 3z R b
. . =3, Y- =-3x+y), Z =7 = -3%
- x-y 2 2 1
For the cheice A= ~1/3, X- %, Y=x4y,

Z=1, and we write the system in the symmetric for®
E < 9y _ dx

X x+y - 1
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3 s dc  dz
From the integrable equation — = =2, ;
= T we obtain z + 1Inx = G,.
From the integrable equation dr _ dy . We obtain % + 2y = C
X  x+y Y = Go

2 i i
Thus, z +1Inx = Cy, %" + 20y =, constitute the general solution,

dx
Solve the system — = —— = —. Find the equetions of the integral curves through the

points a) (1,1,1) and b) (2,1,1).
dy

Xx+z

Consider the equations = — eand

dz ox i i .

T + The first is integrable and yields xz =

C,. The second is not integrable but is reduced to dy = {1 + Co/xydx b&\\’t\he substitution

z = Cy/x. Integrating, we have y = x - {y/x + Cyor, substituting €y €2, y-x + z = Ca.
Thus, =xz = {3, y~x+z ={, constitute the general solution. i"’; K

The integral curve through the point (1,1,1} isthe intersectionof the hyperbolic cyiinder

xz = 1 and the plane y-x+2z = 1. The integral curve througl‘g x(g,\l,l) is the intersection of

the cylinder xz = 2 and the.plane y —x +z = Q. X x\‘
\/
dx dy ., dz O
Solve  ow— = 2 —— O\
¥-z zI-x ¥ —x :\\\,

No equation is integrable. By means of 't’hé;mmtipliers [=m=1, n=0, we obtain

"

dz_ _ [dx + mdy + ndz‘t’:u“ | dx +dy or dx+dy-dz'= o Then
¥ -x Ly —z) + m{z-x) + n(¥»-x) y-x
A) \\ x+y—z = Cp.
&< \dt“: d dx _ dy
Using A} to eliminate z i “— = %Y,  we obtain = o Then
Yy y-z z-x y=x ¥y-Gy

In(x -C;) + ln(y -Cy) NI C, or (z-C)(y-C) = C,, or, eliminating C; by means of Ay,

B) AN\ (z-9)(z-%) = Ca
4) and B) copgtitute the general solution.
< v
i 2 dz
Solve }{;k = J_’..L:l = ? .
7 * 24 2, , ;
x y oy - = p, we obtain
From the integrable equation =—= = T3 or xdt-ydy=90
. Y
byt =t
Y . ’ . : rable equation Elf = :’—ri(—fz However, it
We may then use A) to elimimate x in the non-integ - -

2 2
dz _xdx vy dy oy o3 ¥ = Cyz’

i = = btain -— =
is simpler to use the multipliers lem=1, n=0too - 3 +y3
" dx dy  _ dz .
Solve th m = L =
¢ the syste - +y2 2y (x+y)52
dz = M or é = (x +y) (dx+ dy). Then
Using l=m=1, n=0, W obtaln ———5— -

2
(x+)’)53 (x+yy
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(x+3’)2- 2lnz = Gy

dr + dy  dx - dy
—_ >+ Then

Using ly=my =1, n, =0 and lp =1, mg=-1, np=0, we obiain 2
(x +) (x-¥)

2
_...1—-=_1..+K or y:cﬂ(xz_y }.
x+y x-¥
' d dz
2. Solve the system gy @

¥ -x 2x -3y

The equation 5-‘;- = d_z or xdr+ydy =0 I8 integrable and we chtain eyt Cy.

Using [=3, m=2, n=1, we find 3(y) + 2(-x) + (2t ~3y) = 0. Hence, 3dr + Zdyrdz =0 and
3+ Ay +2 = Cou
.\\'\
dx dy dz )

96. Solve the system = = .
fy-3: -2 %y-3x

Wt
£ »

W seek multipliers l,mn such that  A) I(4y~32) + m(dxs921) + n(2y 34y - 0.

Rearranging A} in the form (4m-3n)x+ (4l+2m)y+ (=31 =2M)2 = 0, wc sec that it will be
satisfied when 4m-3n =0, 41+ =0, ~31-2m =0 orNN¥m:n = 2:-3:_-4. Then

D)
2dx - 3dy ~4d2 =0  mnd A28y -4z = C,.

Using the arrangement 4(ly +mx) + 3(~iz -nx) +2tm;i-n} =0 and setting Iy + mx =0,
-lz-nx =0, ny-nz =0, weobtain l:m:n =.x Wy . -2, Then

™ :‘

zdv - ydy ~zdz =0 @ AP -y'-i? - C,

E Y
R
~

N\
27. Solve the systen -2 %% - 9én | _rdz_
(9-ryyz € =p)xz (P-q)xy

Consider {g-ryyz + n':'(r:'«-p)xz +n{p=-q)xy = 0,

From  g(lyz - nxy) *’,'":(2’;}2:- iyz) + p(nxy-mxz) =0 we obtain l:m:n = x:y:z. Then
Pﬂéﬁéﬁ‘ﬁydy +trzdz =0 and  pxleqyleri? - .
From z(lgy :m@ + y(npx - lrz) + x(wrz ~ng¥} =0 weobtaln l:m:n=px:gy:rz. Then
'\:"ﬁ:x}b; N qzydy +rirds = g and p2x2+qzy2+ F2,2 C,e

i =
\¥
\:
¥ 4

28, Solve the system %% __ . dy dz
2, 2 2 2 .
oty -y -x2—3'2+xz (x-y)z

el tem=Lon=-1, we abtain  (:24yoysy 4 (e2oy?,py, - (x~y)z = 0. Then

dx + dy —dz = and  x +y-.z=(,

Using l=xz, m=yz, n=~(x"+5%), we find

xz(x2+ z. Z 22 y? 2
Y ~¥2) 4+ yz(-x "~y 1 xzy o (x +y2)(x-y)z = 0.

Then xzdx+yzdy_(x2+y2)dz=0 or Xdxtydy dz
2 2 :
and Intx? 4 o2 Ty
Mx"+y) - 21nz =1
or 2 *

2
Tty = 6222-
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30,

31.

32.
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golve the system g = ffl = dz .
Y a4yt
de _ dy 2
Prom o- = 7, Wehave xy" =G By inspection, 2'(2x)+2y2(-9)-y*(4xy*-2) = 0;

2
then 2y“dx+ 2yz dy - y2d2={) or 2&_%: 0, and 2 - 2 -C,
u 1 _—= -
y y

Discuss geometrically the general solution of é = é! = E‘E
p 0 R

For convenience, let us assume that in solving the given system we have obtained a pair of

integrable equations ~
"\
Pydx + Qudy + Rydz = 0 and Podx + Qpdy + Rodz 2 p\

whose integrals are respectively ' N\

N/

gix,y,2) = Cy and hix, 3, 2) = C@Iﬂ,’

Through a general point {xq,¥o:Zo) of space there pass é@.\surfaces ‘(one of each of the
above familles) whose curve of intersection Cp is the integxfzﬁ curve of the given system through
the point. The tangent planes to the two surfaces at (x3,¥o,2p) are normal to the directions
(Py, 04, By) and (Pa, Qs Ro) evaluated at the point, apd)the line of intersection Lo of these
planes is normal to the two directions, Let (X,\X;Z)’he a set of direction mmbers for Lo;
then O\Y :

& A R Py Py G
X=X ’ Y,;j: $ ' Z=A
Q: A ..};”* Ry Pq P, Q.

3

are propertionsl to P,Q,R (all eyta.{hated at the point).
Now Ly is the tangent to 60<é¥’:(xo,yo, z5), since the tangent to & space curve al one of
its points lies in the tangept plane at the point of any surface containing the curve. Hence,

the integral curves of, thé’é.ystem dr . d . il consist of & doubly infinite system of curves

RS P Q R
characterized by hB;.fact that at sny point (xo. Yo,
peint has (PD,QQ;RO) as direction numbers,

zo) the tangent to the curve throngh the

~

AN
Show thé\ﬁh"e family of integral surfaces of
d_x = E‘.J_' = f are orthogonal.
P Q R
' the directior (Pg,Gh.Ro)
i act that at any gemeral polnt (0. Yos %0) S
This follows from the © f 1) through the point (see Preblem 17y and

is: @) normel to the integral surface ©
b; the directlon of the integral curve of 2) through the point (see Problem 30).

1) Pdx+Qdy+Rdz =0 and the family of

integral curves of 2)

Solve 1) ydx+ xdy - (x+y+22)dz = 0 consistent with @) z = a, hyx+y+2=0,

) x +y =0, d) xy=0a

From each given surface we may obtain an integrable total
is to solve this differential equation simultanecusly
ormer rather than the general solution as in

Equation 1} is not integrable.
differential equation, Qur preblem then
with 1) using the particular solution of the bl
£) of the introduction of this chapter.

we obtain ydx+zdy =0: then zy = C.

i : 1):
a) Her =a, dz=0. gubstituting in ° * '
) Equitifmsa z=a, xy=0C are caid to constitute & solution of 1)
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b) Substituting x+y+2z =0 in 1), Wwe obtain ydx+xdy = 0 and xy = (.
The solution is zy =C, x+y+2z =0.

¢) Here y = =x, dy = —dx, Substituting in 1), we obtain xdx +zdz = 0 and 2, 22 . c.

The solution is 2Z+22=C, x+y =0

d) Here xy = a, xdy+ yds = 0, Equation 1) reduces to (x+y+2z)dz - 0.

Then, either x+2y+22 =0 or dz.=0 and z = C.
xy =a, x+y+2z=0 and z =C, xy = a constitute the solution,

39. Discuss geometrically the problem of selving Pdr+Qdy+Rd: = 0 consistent with the given
relation g(x,y,2z) = 0.

3 9 oK
Prom the relation g(z,y,z) = 0, we cbtain o8 dx + o8 dy + = dz - 0.

ox Jy dz
N

We solve the system Pdr+Qdy+HRdz =0, gﬁdx + g—sdy * g—f’dz - DC\using the particular
< R

solution g(x,¥,z) =0 of the latter, Let « W/
fix,9,2) = C, gix,y,2) = 0 :ﬁ\\

constitute the solution. The integral curves are those cuft i)ut on the surfece gix,y,2) =0
‘by the system of surfaces f(x,y,z) = C. Thus, Problem 32¢may be stated ns: Find all curves
Iying on the surface {plane) x +y =0 ¥hich satisfy theditferential equation

yde + xdy - (x +y420)dz = 0.

At a general point (xo,¥0.%0) On the surface g(x,y.,z) =0, the line of intersection Ly of
the tangent planes to g(x,y,2) =0 and the surf¥e of the system f(x,y,z)- {, throuh the point,
is tangent to the curve of intersection ois,{',pe two surfaces, Thus, we have found the family

of curves on the given surface g(x,y,z) :,'Q3=whose tangent at any point lies in the plane, through
this point, determined by the differe{tial equation, (See Problem 17.)

For example, consider Problem,:{{g} On the prescribed surface x+y - 0, choose any point
(a,—a,b). At this point, the tahgent plane to x+y = 0 (here, the plane itself) i normal to
the direction (1,1,0) and the™tangent blane to the surface (of the family) x%4:% = a?+ ¥
is normal to the direction{(2,0,b). A set of direction mumbers for the line of intersection
L of these planes [the}\é.ugent to the curve through (a,—a,b)) is (<b,b.a),

Now the plane th{t(ﬁig}i {a,

~a,b) determined by the giv iff : ion is normal to
the directiqn [}’lxi\ given differential egquation is no

y "+y+2z)](a.-a.bj = (-a,a,~2b). Since (-b,b,a) and (-a,a,-2b) are normal
directions, i;:hi"line L lies in the plane determ

N
\
\ 3

34. soive 1) 2z dx+ dy+yde = g

ined by the differential equation,

consistent with 2) x ty+z = Q.

F = ey —
Tom 2), ¥ s-~x-z and dy = —dx- ds, Bubstituting for y and dy in 1), we obtain
3) (2z-1)dx - (x+z+Ddz = 0.

The transformation z = 23+ 12, x = x,-3/2 reduces 3) to

4 2zpdry - (xy+24)dz, = 0, @ homogeneous equation.

Toe transformation x,-mz, reduces 4) to (u-1)dzy + 2z,du=0 or %%t , 2du

F u-1

= 0‘
Then Inzy + 2 In(u-1y=1In K
or 2
Z3(u~1y = K,
by x +3/2 and zy by z-1/2,

{x—z+2)2 = C(2z-1),

Replacing o by x Jz4, x
Vo1 %1 this becomes
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SUPPLEMENTARY PROBLEMS

Test for integrability and solve when possible,
35. (y+32z)dx + (x+22)dy + (3x +2y)dz = 0
36, {cosx + exy)dx + (ex+ eyz)dy + eydz -0

37, dx + {(x+)dy + dz =0

28. 2de + 2dy - 2ydz = 0
2 2
3. xdx - 2" dy —xydz =0

40. (x +z)2dy + yz(dx+ dz) = 0

41. Zx(y+z)dx+ (2yz—x2+ y2— zz}dy+ (2yz—x2-—y2 +zz)dz =0

42, yrdx - 2zzdy + xydz = 0

43. xdx + ydy + (xz+y2+zz+1)zdz =0

2 2 2 2 K7s\
1(x" —yz—2")dx + xz(x+2)dy + x(z —% -xy)dz = 0 ,'\\_{"

Ans. xy + 2yz + 3xz = C

¥

X -
ey +e’z+s8inzx =C

¥+ In(x+z) =C

xzz +y = sz

Not integral}{e.
N\

yx+2)(3Glx +y+z)
< s.;:

2 ;iﬁy v 20 = Cly +2}

Ny
_*

’;T;Q:sz
2

{x2+y2 +2:2}e'g =C

~ ) 3
£ 3
\../‘

(x+y)/c + (y+2)/x = C

Solve the following pairs of equationms.

\S,
Q,}\

4. dx +dy + (x+y)dz = 0 N Ans. zry=Get, x+y=Cofe
z{de +dy) + (x+y)dz = 0 I\
O
¢&\J
% 2ijdx +2x(dz dy+':;d2) ;0 \\ xzyzzci. xzz+x+z=C2
¥ -x"zdy + ydz = O\
: <"
g T A L SN S 2P
y'fz xzz ya 3"\'"
\,\\,.
48. 3dx=ﬁ=..§;f; 3x2__y_C1, yz_z = C,
Yz X2 2
\/ 2 2 33
9. & & dz x-y=Cy, z=ay+txy +2¥ +06
1 2 2
1 1 F+y{l+2xy+3xy)
2 2
o0 dx . ody _ 4z y = Gz, £y +2 =Coz
-y ;2 2xy 2xz
2 2 .2
51 dx _ o dy _ _dz x+2xr+32:0, & vy +2 =C,
Jy -2z z=3x 2x -~y
oo 4
52 dx dy ___j_z___. x_yz2=C,.x+y +z =C,
' = - "
a2ty y@t w2 =YD
dz z = (4, :vc2+y2+z2=c2
o3 dx dy . %2 xy 1
’ i B z 2 .
jc(4"-2--}'2) y(xz-zz) 2wy %)



CHAPTER 23

Applications of Total and Simultaneous Equations

in its rrat i ont inves to
i j force F, its acce lomtmn_ con
WHEN A MASS a plane subject tqa cele on cont
" tisfymNzg‘izEﬁ’s Segond Law of Motion: mass x acceleration O
sa

a tl i ec : 1 iI]tI. t,f_‘:‘x a USEd

2
d®x a = dY N
= ———— = ——— \
ax dtz y dtz . \
and, denoting the components of the force by F, and F’ the equialions of mo-
tion are \
d%x F
n— = P
2
dt
¥
O\
x“,\\
N/ x _
N\

COHPONENT.S':.OP F IN RECTANGULAR AND POLAR COORDINATES.
\%

In polar cp‘\si\cfinates, the corresponding equations are
2
M'“, {dtﬂ (--) } = FP. m{2 = P dtz} 5
V

where F, and F, are the radial

i the
and transverse components of force, i.e.,
components along the radiug vec

tor at P and a line perpendicular to it.

SOLVED PROBLEMS
1. Pind the family of curves orthogonal to the surfaces 2 4 25+ 422 - C.

Since 2%+ 2y%4 4,2, ¢ is the primitive of the total differential equation

xde + 2ydy + 4zdz =0,
the differential equation of the family of orthogonal curves is

d"=dy_dz

31‘)
x Bee Chapter 22, Problem
2y 4z ( p

178
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E = d—yi we have y:sz. Solv:lng d_,)::dz ?
x 2y 2 Eswehave z = By®,

The required family of curves has equations y = Ay

Solving

' Z =By2.

2. show that there is no family of surfaces orthogonal to the system of curves
2 .2
-y =ay, I+y=bz.

Differentiating the given equations and eliminating the constants, we have

2 2
2xdx-2ydy=";’ dy, dr+dy = 1Y g,
z

2 .2
The first can be written as _dx___ = ﬂ Solving 1t for dx, dx = Tty .d;‘(,\ and substi-
x4 yz 2y : 235.7‘ N\
2. .2 <\
tuting in the second, we have (——3— + ydy = ¥4 or ﬂi?} S
2 2y 7 {x+y)z

Thus, the differential equations in symmetric form of the give,n&‘ﬂ.mily of curves are

J:2+y2 2y (x+y)z\'

Since the equation (x2+ yﬂ)dx+2xy dy + (x + )z dz ;\'6{'does not satisfy the condition of
integrability, there is no family of surfaces cuttﬁésﬁhe curves orthogonally,

%
@

».{‘:;‘ .
3. The x-component of the acceleration of a p?,xjtiele of unit mass, moving in a plane, 1s equal to
its ordinate and the y-component is equalitd twice its ebscissa. Find the equation of its

path, given the initial conditions x<\"(\= 0, dx/dt =2, dy/dt=4 when t=0.
\

(%
f_
b4

n

¥

The equations of motion are,

= —~ = 2x and

dx _ dy
dtt  d?

¥ -
Differentiating the fi{sj:; fwice and substituting from the second,
$

2

e

o/ -at . 4
xz\;%cﬁ“t + Cae + Gy cos at + C, sinot, where a = 2.

A 2 ]
Then, \”\‘;"Jf = d—: = az(Cteat + (e ot _ C, cos at — Cs sinat),
4 dt
gx- = a{Cieat - C,e'mt — Qg sinat + C, cobat),
t
and j_y = o (Cieat - Cge-at + C, sinat ~ G4 cos at).
t

2 4
= - = - - C _C [ J——
Using the initiml conditioms: Ci+ G2+t Co=0, C1+ Ca-Ca=0s Ci-CotCe=3 G-t at

4
2 o -2
Then C1:—C2=3—§-—g- Cg =0, and G4 = :

a

The parametric equations of the path are:
Vie _ Vo .
b2 dB VS - D - ha-vh VT st vaL.

Y “*

Y 4
W /3t V2t . i /3 1n V5o
{;(24-;/5)/5(:3 - )+ 5(2 /23 vB sin

x

-
n
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yi 4 1" (’l"!‘i(}ly a_sthe o |
4: A par ticle of mass m is Iepellecl from the Origin O by a force varyin v -
. 1 fr 0 If it starts at £=a, 9 ={) with veloCit.y Ya. perp(rndiculnr to th
the d'stance p am U e ini

tial line, find the equation of the path,

K nk
11ing force are: F - — = ——, £ o<,
The radial and transverse components of the repe o p} p’
2
d’% df.2 wk? (2;"‘3@ pﬂ) 0
m{— - P("":l ] = = dt de dfz
Hence, o 7 3
2
2 d°6 dp b
dp b2 & 2) p— + 2= —
or 1) ;'- - P(E;) = p-5 de? dr ot
d6 o (B AN
2 df . . — = v then (.-{&v, anc
Integrating 2), 0 5 - Ce When ¢=0, £ =a and P t AN de 2
2 22 kz .“‘: ““(}p
a'y dp
Substituting for 99 in 1, é_x‘: = -—5-9- i Multlplyiruz by
dt dt P P N
< 2 2 2
5 8P d% - 3 g + & dp and (dﬁ),z,’:ﬁ\ _a u02+ ko G,
dt g2 5 dt dt o
P )
0: \‘
do IR ée
- - \ d
When t=0, P=¢ and -0 then G A{vﬁ}— an
N ° z 2
do,2 = 2,2 + kz) -.l’..»._]'-) = (a’ug + *2),0 il
(dt) (a'v ‘..(:dz‘ o? a2p?
N 22 2.2 2 AT
Dividing by ()7 . $% (@B @5 + K 6" - oy and 22 BI04
ng dt P {ﬂ} a'o? P/ aZvo
O I
N k
Integrating, éarq .secz’g = 2 v:+ € + Cg,
x’\“‘: e U
i"\’z .
" N/ k
When =0, P%’Q§ﬂﬂd O=0; then C4=0 and p = g sec? 2P0tk :z; 8.

o

\
H. A prujecmé of mass m is fired into the air
ground. Neglecting all forces e
tional to the velocity,

i the
¥ith initial velocity vp at an angle & "f‘;por_
xcept gravity and the resistance of the air, assumed p
find the position of the projectile at time ¢,

In its horizonta] motion, the projectile is affected
only by the x-component of the resistance,

Hence, y
4> dx d d? dx
1 m—?-:—K-—z—mk—-— or —-ﬁz—k-—-
de? dt dt di? dt

In its vertical motion,
by grevity and by the ¥
Hence,

the projectile is affectegd
component of the resistance,

2
2 m?“.l_:::—mg_mk-.d.x

dt dt

2
or  4¥ _ _ dy
ti ot

=1
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dx
ing 1), b -
Integrating 1) o kx + Cy and x = éci + Cge kt‘
. dy
tegrating 2y, - = - - 1 —kt 1 1
Integ g 2) T Bt ~ky+ K, and y - EK1 + Kge ™" _ g(;t - ).

k

Using the initial conditions x-y-=o, ?‘ = vy cos O dy _ vp sin &  when t=0;
t N dt :

1
Ci=vo cos8, Cp == v cosb; K =1 5in8, K, :_%Uo sing - Lg.
2
k
1 -kt )
Thus, E(vo cos B)(l-¢ "), y= %{(% t v sin (1 - e kt) - ath.

Two masses, my and mg, are separated by a spring for which k = k, lb/ft
and my is attached te a support by a spring for which k = k, 1b/ft as in
the figure. After the system is brought to rest, the masses are displaced
o feet downward and released. Discuss their motion.

Let positive direction be downward and let x, and x, denote the &ia-
placement of the masses at time ¢ fromtheir respective pos:tlons.at\'est
The elongation of the upper spring is then x, and that of the lqwe}smmg
is x,-x4. The corresponding restoring forces in the springg\arxé

—kyxy + Rg(xg-x4) acting on m, o\ 7
and —Rg(xg—-124) acting on mg. \' &
A\
The equations of motion are . \\
dz ‘:’ ¢ d2x2
My ﬁ = - k1x1 + kg(lg —x,)Q, ‘B.nd ng 2 = - kg(lg —xj_:l
dt? s\ dt
p » 2
or 1y [m1D2+ (ky+ ko)lxg — kgy\g'\\—-\o_ and 2 (mol + ky)xs — Rexy = 0,

¢.&\J
Operating on 1) with (mﬂﬂz +~k;)\and substituting from 23,

".000‘ 2 2 B
(”'-QD2+ kg)(miD2+ ky+ Bpliq - k,(ng2+ kpyxy = (nger koY (D" + kg + ko)xy = Roxy = 0
:'{\'w
(\NY 8
or N (b
O

AN

Denoting tbe \'oots of the characteristic equatlon by tie, +if3, where

N ky K kot kg a2 kiky
q2,52= 1" (k1.+ 2+2)i\/:1m2+m2) 4m1m2

k1+ kz k_g 2 kikg % - 0.
(—“—juli + mQ)D + mpimg) 1

My i
. . . -T‘r,af
¥ = Ciemt + C.‘,e'w‘" + C,,e"’&t + Cqe and
2 i ] kot by-mB2 RLL -i8t
k -y . iat —tat 1 9= + C e )
xg = i(J!mf32+ ky+kg)xy = E—%mﬁ +0ge )4 ‘—"—"—’( N
2 2

[ -1 i8t =18t
= #(Clemt + Cge 1'”) + w(Cse + Cue Y.

- _ﬁ:ﬁ:ﬂ when t=10,
Using the initial conditioms x3=%z=0C: Tt I

2
2 a ky-ma
- = = — —-—-—-—)-

av-i a ?_L._"'}E_) and Cy Ce T
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7. A uniform shaft carries three disks as in the ad-

joining figure. The polar moment of inertia of the
disk at either end is I, and that of the disk at
the middle is 4f. The torsional stiffness constant
of the shaft between two disks (the torque required g E
to produce an angular displacement difference of

ohe radian between successive disks) is k. Find
the motion of the disks if a torque 1T sinwt 1is
applied to the middle disk, assuming that at ¢=0
the disks are at rest and there isno twist in the
shaft,

At time t, let the angular displacement of the diak at either end be &, and thatof the disk
at the middie be 6, The differences of the angular twists of the ends of the two pieces of
shaft, from left to right, are ;- 6, and 6~ 6,, The restoring torques acting on the disks
are k(8,—61), k(6,-8;) - k(B,— 6,) and —k(6y - 8,) respectively. The net £drque scting on a
mass when rotating is equal to the product of the polar moment of inertia jof the mass about
the axis of rotetion and its angular acceleration; hence the equatiogfd?;motion of the middle
disk is 9

N
<

2
46, R

1 41—-;-“1 = k(G ~8;) - k(8- 6y) + 2Ty sinewt or CETDS v kyE, - ki« Tysinet
dt N\

% 3
"

and that of either end disk is

a% N
2 dt_; < k(B-0)  orXNUID e k) = kB,
Operating on 2) with (2ID%+ k) and subsbituting from 1y,
2 2 N
@ID*+ iy gD+ )6, K\kczmﬂ R)8, = k°6, + T,k sinwt,  or
3) BP0 + 3kD8, = Tok sinwt.

A

Th ha. * - : oo 2 . -
e characteristic roots. a{é 0, 0,ai, -qi, where af = 3k/2I, and

O
4) a8, K"Q‘:} Cot + Cgcosat + C,sinat + Tok sinwt
O Ia* 2Ia? - 3k)
..\1"\’;" = Cy+ Gyt Tok
\\;.. 1+ Cot + Cyeos at + Cysin at + - 202 sin wr.
2 (e ~ a.zj

Prom 2), 68, = (é D%+ 16, and

. I
5) &, Cy + Cot + Cg(l = -k-a.z)cos at + Co{l - I a?)sin at + M in wt
k 5 2 2 2 S1N &l
- 2w (w -~ a™)
om 4) and 5), we obtain by differentiation,
1, 46
4" el Cz - Co 5in at + Cyo cos at + —J08
7 . > cos wt, and
w(w’ - o)
dé
5h S - ¢, - L 228
o 2 — Caa(l — z a”)sinat + Coafl - % o.z)cos at + M cos wi

2% (w? - o)

Using the initial conditions @,-g,-g, %01 . 992 _
. 3?—0 when t=0, we have Ct+C3=U-
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1.2 Tok
I1- = = 2
C’_ + CS( ka ) 0, Cg + C4a+ 2‘-——---—..___I2 02 - =0, and c2 N C,a.(l- £a2)+ Tbk-TowI = 0.
wlw”-a) 2r 2@{&;2-0,2)
Then Ci = C:! = {, C4 == Tow » CQ = -—TO »
3la(w?-a?) 3w
2 .
91 = ;r'_;(é+ a; sin wt - L5 ai Yy o= ZQ(E n Clj Binwt—a? S:i.na.t) and
" 2 2 2 ) '
W@ -a’)  a®-a?) 3 @ u.msz?-az}
8 = 61 - Ty (@ sinwt - @ sin at) )
2Ia(cu-2—a.2)
. The fundamental equations of a transformer are ~
di di di di N
1 2 s o X 1
1) ME;-*'LEE*'R&Q“U, 2)ME_3+L1d_t1+R’<I’*=’E(t)'
O
where L;(t) and 1,(t) denote the currents, while M, L,, L, B,, R, {ra constants
Assuming M2 < LyLg, show that \\\
2.d% di N\
A (Lalo-M)y—2 + (Bila+Raly) 2 + R:B{iy = RE(t) + LE'(t),
di? dt /
2 \\ V
B) (Lalo-#DT2 & Rulo+Rl)22F BRyi, = - HE'(1).
dt? . ‘3‘
Solve the system when E(t) = Ey, a constm}. v
K\
Differentisting 1) and 2) with raspg\ct to t,
S iy d}\" 2%, diy diy _ o
3) MIX o4, e Rg 2=0. _4)M—2+L1—§-+81;=E(t).
dt* PR dt dt
Multiplying 3) by M s:i?i?i} by L,, and subtracting,
\ )
diy dig _ s
(Lg_Lz— 2) 1 + RLna'"_ _MHQ E - LiE (t).
:"\. di*
) T
Substituting\ﬁr g..:.ﬁ from 2), we ocbtain A},
Multiplying 3) by L, and 4) by ¥, and subtracting,
d: dis _ _pefery.
(L1L2-M2)d 2 4 Rala g - RME = SHEO
di’

Substituting for gﬂ from 1), we obtain Bl
1

% di o
(LiLg..Mz)é—;:l + (H:.Ls*‘ﬂzf-ﬂf + RyRois = Rofo.

When E¢t) = E,, equation A) I8 "

2 =
~(Ralo + Rols) + ¥ (Bsly ~Rala) * 4M28———‘R2 denote the characteristic roots.
2
Lyl — M

LEta,ﬁ - é
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at At EO .
Then iy = Cie + Cae + E:

To find ip, multiply 1) by M and 2) by Lg, and subtract to g¢btain

2 di : :
MRyi, = (Lila=H )d_:i + LoRqyiy = LaEo.
1 at At LR (C at+ C Bt)]
Then ig = Ji}'H—f(LiLz —Mz)(a,C,e +ﬂCQe )+ Lg I.( 1¢ € .
2

Note that since M2 < LyL,. both q and 3 are negative, Then after a time, the primary cur-
rent becomes approximately constant = Eo/R, and the secondery current ty becomes negligible,

Q. A moving particle of mass m is attracted to & fixed polnt O by a central §\orcc which variss
inversely as the square of the distance of the particle from 0. Show that’@(. cnuation of its
path is a conic having the fixed point as focus,

A
¢\A

S

£
Using polar coordinates with O as pole, the equations of motior}’.‘arv

%

N

2 H O 2
df K nk o> 462 |k
1} m[d_!: - P(E‘t')z] = - "-'2 = - "—2 or K ,N% - p(tﬁ) - —? '
dt P p vt N
\/
2 (N 2
dodé  d°6 ¢ dp df d’p
Y m2E =+ p—1=10 ot/ 2= p— 0.
dt dt dt? :\\\\‘ dt ot d:2
d  2df _ 2 df _».':’:";
From 2), E‘E{p aﬂ;) =0 ang & ‘a?}:-,’eg_.
O\
Leto-=1. Then d_gzg.}.:c’g. dﬁzﬂ_iEE:“i@E{?__( (£Tl and
P a o prs dt  do dt o d6 dt de
do _ d dor dzo' 44 22 do
= T athgg T -GS o - ~Gi9 ~—;- Substituting in 1) and simplifying, ¥e have
dt PAS e 46
®)
r d% kz'\\"" .
1) —; +9 = 3“2 linear equation with constant coefficients. Solving,
& Vi
A 2 2,2
o = }(.',05(64-63) + k—z or g = 1 - C,_J.-"’k .
G K CoCt
— + Cycos{G+Cy) 1+ =222 cos(F+Ca)
2 2

Writing Cf/.f:c2 = I, ]CQCf/kzl e, C4=a,

8= , the equa-

this becomes o =
1+ ecos(f+a)
tion of a conie having G as focus,
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SUPPLEMENTARY PROBLEMS
Find the family of curves orthogonal to the family of surfaces ::2+ y2+ %° = C
Ans. ¥y = Ax, z =By2
Find the family of surfaces orthogonal to the family of curves y = Cyx, 22+ yee = G
Ans. 2 = CGyh)

A particle ?f mass m is attracted to the origin O by a foree varying directly as its distance
from (), If it starts at (a,0) with velocity v, in a direction making an angle © with the hor-
izontal, find the position at time %,

Ans. x = acoskt+ m—gsinkt, y=wsinkt ~
3 \\
The currents 1, i,, i = iy+1i, in a certain network satisfy the ecugéi:‘lﬁhs
: di , \V
201 + 0._1$ = 5, 4i + iy + 1000g; =\l

AN

¥ 4

Determine the currents subject to the initial conditions 1=\L1

tp =0 when t =0,

A\

2
: : dg, odgy dgy 3
Hint: Use i, = =& top obtain —21 + 240 -1 + 40,0009, = O.
1 71 o L Ugy

dtz ’:;\"
- RIS ) 1 =120t
Ans, iy = - o750 160, i, = iu - 1"2’@5 160t) + ge 20% sin 160t

%

ol ¢
PR N
N3

W
Initially tank I conteins 100 gal of brinP“with 200 Ib of salt, and tank I contains 50 gal
of fresh water, Brine from tank I runs™into tank IT at 2 gal/min, and from tank II into tank
I at 2 gal/min. If each tank is keKt{ﬁell stirred, how wuch salt will tank I contain after
50 minutes? ¢ \

Hint: g, + g, = 200 ﬁla&__?q;. Ans. 68.75 1b
v TGt _(so+t 100-t
¢
"\x'{.\QO
\J
O

~\J
)

N/



CHAPTER 24

Numerical Approximations to Solutions

IN MANY APPLICATIONS it is required to find the value y of ¥ currm;u_mrimg to x =
xo+h from the particular solution of a given differential cqualion

1) yt = f(x,¥)
satisfying the initial conditions y =y, when x=x,. Such problens have been
solved by first finding the primitive
2} y = F(x) + C
of 1}, then selecting the particular solution .'\\
3) y = 4(x) R,
£ )
through (x,,¥;), and finally computing the required vql}‘{p“’f plxhy,

When no method is available for finding the prim{t;}vc. it 1s necessary to
use some procedure for approximating the desired Walue. Intepgraling 1) between
the limits x=x,,¥ =yp and x=x,y=y, we Obtaln

9.\

x X €
1) Y = Yo + f £{%,y) dx.

Q™
The value of y when x =x,+h is then ’

- ..':}‘ ) %‘Hl
5) Yy = Yo\t f F(x,y)dx.
\ Lo

The5r)nethods of this chaptef\will consist of procedures for approximating 4)
or . N\

O
PICARD'S METHOD., For valués of x near x =x,, the corresponding value of y = g(x)

is near yo = g( 1,‘?“Thus. a first approximation y, of y = g(x) is obtained by
replacing y by\jg} in the right member of 4), that is,

~

. :00\:'0 x
\‘:" Yi = ¥yo t f f(x,yo)dx.
*o

A second approximation, y,, is then obtai i - ight
momber of 4y, that is, tained by replacing y by y, in the rig

x
Y2 = Yo f f(x,y,)dx.
Xa

Continuing thig procedure, a succession of functions of x

Ya. y,_, ¥z, ¥a, *vavens
is obtained, each givi . . X
the preceding one.g 1ng a better approximation of the required solution than

Picard See Problems 1-2-
icard’s method is of consi i it 1
unsatisfactory as a practical derable theoretical value. In general, it iS

i ica i A means of approximation ifficulties
which arise in performing the necessary integrations because of dif

186
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TAYLOR SERIES. The Taylor expansion of y = g(x) near (X0,¥0) is
~ i 1 ” -
6) ¥ = £{x0) t (xX-xq) g'(x,) + '2'(3\"3‘0)28 (%0) + -]é(x-xo)ag (ko) # ereeer

From 1}, y’ = &'(x) = f(x,y}; hence, by repeated differentiation,

of (Mdy _ 3 Lof

y" o= g'(x) = = 2+ f=,
ox 9y dx ox ¥ f’ay
" ” d ,of af F) o, ,of of.
T Y' o= £(x) = — (=~ +FfZ) = (Z +f)(=+ FZ
) dX(Bx Jy (3.'{ By) (Bx * ay)
2 2 2
= u+ﬁﬁ+zf_af+f(ﬁ)”+fzﬂ, ete.,
32 O0x 9y ox dy oy a},z, ~
A\
2 20{ N 2
For convenlence, write p= E, g = E)ic-. r= E. & = j-ré f = of and

let f5,ps,q90,+++ denote the values of f,p,q,++ at (xo'.%)'. Substituting in
6) the results of 7) and evaluating for x =xgth, webb‘tain

v

8 ¥y = yo + hufy ¥ %hQ(Po‘i'fo'QO)"' %hs(ro+9'\\gn+2fo'sc+fo'qoz"'fg' fo)
+ ererncnnn \s '

This series may be used to compute ¥} it is evident, however, that addi-

tional terms will be increasingly comﬁ{lei. See Problems 3-4.

FIRST DERIVATIVE METHOD. A proced' eVinvolving only first derivatives, that is,
using only the first two ‘ge{;@g: f Taylor series, follows,

¢ '.“ /1
N\
R ;> C
< \™
Q
Yo N
M x
0 xo+h

As a first approximation of 7, take the first two terms of 8)

j; % Yo + hff?‘o:}’o)-
let PQ be the integral curve
i ding to
the point on the curve correspon
:f ;1‘) +Ehr;hugh f(x"jgc'l ;n fkletl;foﬁbis the angle of inc}init':lzn of the tangent
= . an = = a .
at P, then frO; 1y tan 8 = F(%o,¥o) 20d the ;ﬁﬁrﬁliﬁ'ﬂio
' Yo*hf{xo,Yo}=LP+htan9_ :

To interpret this approximation geometrically,
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s let the interval L¥ of width k be divideq
in a better approximation, : -
intgonogflziﬁtervals of widths h,,h,,----!:,,. (In ;:heTlt;;gur‘O, n 3.) Let the

line x=x,t+h, meet PA in R{xgthy,yotky) = (x4,¥1).

¥1 = Yo t ky = ¥4 t By f(xo. ¥}
Let RS be the integral curve of 1) through R, and on its tangent at B take T
having coordinates (x,+hs, ¥3+ks) = (Xa2.¥.). Then
Ve = ¥t kg = yot hof(xg,yy) = yo t hyf(xgthy, yoth, £,
. =

i finally un approximation

ici ber of repetitions, we reach y ‘ re
;éte; ;qugl?l;egtl:e:gmfmm the figure that the accuracy will mlt_:re;u?e as the
numi())er o':f subintervals is increased in such a manner that the widths of the

e Problems 5.8,
subintervals decrease, Sce Problems 5-8
RUNGE’S METHOD, From 5) and 8) we obtain &
o
9) k =¥-y, = 'Lo f(x,y)ax QO

$

'\f 2
hi, + %hzfpo*'fo%) + ‘%h;(fo t gy t 2f03q{1?6Qo v fatg) 4 oeeaaen

\

Assume for the moment that the values yo,y“y\,pf Y = g(x)y corresponding to
Xo, X3=Xqo +3%h, X; =X, + h are known, Then¢by Simpson's Rule,
] XY \:

x0+h i:'\
10} k& = f fx,y)de » %[f{xo Yoht+4f(xo+ 5h, y,) + F(xa+h, v L.
0

"

Actually, only y, is known, Rumge’'s Method is based on certain approxima-
tions of y, and y,, %

Vi N Yol 3hf(xo,¥0) = yo + 3hiy,
¢ L\
Ya %’\ﬂo + hf(xg+h, Yothfy),
chosen so that when k,.£foun

first three terms coigeid
comes iIH”

d by 10), is expanded as a power series in b thfj
e with those of the right member of $). Thus 10) be

o W/
£\

1 k =~ g{fo'&?‘(xoikih' y°+%hf0) + flxp4+h, Yothf(xgth, yo+hfy)]}.

ay
N
~ 4

.00\.0
These'ﬂalt,‘ulations are best made ag follows:

Ko T Mo Tk = hEGGM Yotk L Ky = BE(roth,yorky), ke = hf(xgs b et Bheh

ko~ él-(fﬁ t 4k, + kg).

Note. Since the approximation of & obtained here differs from the value as
given by 8) in the terms containin

X £ bowers of h greater than 3, the approxi-
mation may be poor if £y 51, See problems 7-11.

KUTTA-SIMPSON METHOD_. Varions modifications of the Runge Method have been made by
Kuitz._ One of these, known as Kutta’'s Simpson’s Rule uses the following cal-
culations:

ky = hf,, k, = hf{x,+3h, Votik,), ky = hf(x +%h, Yot3k,),

k

ko = Rf(xoth, yotks)s
~ %(k; ¥ 2ko + 2k, +k,), See Problem 12.
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SIMULTANEOUS FIRST ORDER DIFFERENTIAL EQUATIONS s )
of the simultaneous differential equations‘ Approximations to that solution

dy _ d
= = {2, ?.5 = g(x,¥,2)

for which ¥ =¥%o al’l{:i Z =24 when X =X, Ay be obtained by the use of Picard’s
Method, Taylor Series, Runge’s Method, or Kutta-Simpson Method. The necessary
modifications of the formulas given above are made in Soived Problems 13-14.
Further extensions to three or more simultaneous first order equations may be
readily made.

DIFFERENTIAL EQUATIONS OF ORDER n. The differential equation

mn

d

“_; = f(X.Y’Y":Y",”"",yn'l) e
dx N
dy ,_dy .
where y’ = s y" = 5 may be reduced to the sysfem of simultaneous
(k As.‘;
first order equations ,x’,\\ ’
L&
d - )
EY:}H) %ZYE: """" L %gu=yﬂ—1! \izﬂi :f(xayaY1vY2l""°vYﬂ-1)'
\.o

When initial conditions x=x,, y=¥o, ¥ &EWi)o, ¥"=Fado s ¥ = (Vnot do
are given, the methods of the precedilfg\phragraph apply.

2
AN : d a ;
EXAMPLE, The second order differeptial equation —32( r 2% 4y =0 is equiva-
dx

lent to the system of simultaneous fii'ét order differential equations

\,\E’y_,_ I See Problems 15-16.
r” A
N SOLVED PROBLEMS

g, &/
£ \V

1, Use Picard’s Meth‘éﬁ‘ to approximate y when x=0.2, given that y = L when x =0, and dy/dx=z~y.

~

Here Qx‘:y)' =xX-¥, xn=0, yD:]_... Then.

x x 12
Yi = ¥+ _£ fx,¥0)dx I+ j; _{x—l)dx = 2x x+ 1,

¥4 x 12 i N _1x3+x2—x+1,
Ye = Yo ¥ fo‘ flx,yidde = 1+ jo‘ (-Ex + 2% -1yde = 5
. 14 1.3 2
X 15 2 - = ey — =X+ X _x+1’
¥s = Yot fo. flx,yayde = 1+ j:(%-x —x 2 =1)dx 5 3
| 5 4 3
¥ 1 4 13 2 _ A LR L ael,
Ve T vt fxf(”y")d‘ =1 fo‘"?&’“’?‘ SRR T I CHE
0

= 1 6 L ix“__l.x3+xz_x+1’ ---------
Bt mt Tet e 3
0.82 ¥ =0 3867 ¥s =0, 83740, y4=0.83746' ¥e&= 0. 83746,
=1, ¥1=U.04a g = Us '

When x=0.2, o = 0.83746.

Thus, to five decimal places, ¥
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-X
Note. The primitive of the given differential equation is y = x-1+Ce . The particylay

-% N ) —x .
solution satisfying the initial conditions x=0,y=1 is y = x~1+2e . Replacing e "y jpy
2 1 3+_1_xl‘__lx5+—1_1b+--......., U
MacLeurin series, we have y =1 -z +x" -2 X"+ 5 60 360 s ohen
comparing this with the successive approximations obtained above, it seems reasonable tg Sup~-
pose that the sequence of approximations given by Picard’s Method tends te the exact solution

as a limit.

Use Picard’s Method to approximete the value of y when x=0.1, given that y - 1 when x =0, ang
dy/dx = 3x+ y2,

Here f(x,y) = 32+ y2, % =0, Yo =1. Then

X 2 % . 3 2 e

¥, = yo+f°(3x+yo)dx = 1+£ {(3x+ Ddx = Ex +x+ 1, | \\

= fx:ix 2dx = 1+f{x +3:I: +4x +5x+ 1)dx = i-‘l&:;:—;xq*.}-ls*éx2+x+l
Yz = Yo f 0( +¥1) = - A 3 5 '

o
81 10 279 1418 177 11576 136 s 1258233 _ 2

= 1+ TeA F X b X b =X b X t——X b —e Dy —x + B2+ 5r o+ 1)

Ja f o TR TR T T T Yt s

\
_ 81 I _21x10 . ﬂxa N Exa N 115’:‘xr 68 e 2535 .
4400 400 240 32 1260 4‘5\‘ 12
¥hen x=0.1, yo=1, y1=1.115, y,=1.12643\ ¥, = 1, 12721.

Ny
LN

L QY

d Ny
1t d——i = x -y, use the Taylor Series Me@ud to approximate y when:

a) x= %, given that y =1 when x = 0.
b) =146, given that y=0,4 when z = 1.

@) Here y = glx}, ‘\ g(zo) =1, y'" = g’"(z) = -yf gm(xo) = -2,
' Y =gz = x*-}‘” 8 (%) = -1, y” = g”(:) =~y g”(xo) =2,
¥ = g"(".)\i\riyf. g"(xp) = 2, Y =g = oy, gVxe) = -2, eten
and equationtﬁjifbe.comes Yy =lezg+ 2 1,35, 1 P R Then
) 3 12 ’

Y = 1-0.2+0.04 - —(0.008) + $5(0-0016) - %(o.oousz) + +ve 2 0.83746. (See Problem 1.)

b) Here g(xo) = 0,4, g'(xa) = 0.8,

g"(%0) = 0.4, g" = 0 ¥ = 0.4, etc.,
and equation 8) hecomes ° § (%o) 4 g (%0} = 0.4
3’=04+06h+(}4h2 94"3 B h® B
. . 4 — ., + 0. _ . = r=%0+
) P 04-—24 0.4———1 +0,4?__+........, where h = x =%o

When x = 1,6, h = 0.6 and

~ 0.81953,  inenenne
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4. 1% = 30+ y%, use the Taylor Seri
) - , or weries Method to approximate ¥ when:

a) x=0,1, given that ¥ =1 when x =0,
by x=1.1, given that ¥=1,2 when x =1,

a) Here (xo,¥o0) = (0,1). glxp) =1,
Y= B = 3z+y?

. g'ix) = 1,
yh o= g'x) = 3y, g"(%) = 5,
Y= g"m = 2y oy, g"(xg) = 12,
vV gy = eyryreapym, g™ (1) = 54,
y o= g = 5(?")2+37'f"+2}’yiv, £ (%) = 354, and 6) becomes

AN
. Wenx=0,1 _

5 2 3.9 ¢ 1775 '
1+ + = + 2x7 o+ = — Prrrrsaas v
¥ x 2x 41 + x +

s

7 o= 1+ 0.1+ 0,025+ 0,002 + 0.00022 + 0.00003 + -+++++ &, 112726 (See Problem 2.)

b) Here (x0,¥0) = (1, 1.2}, &(xg) = 1.2, g'(xo) = 4.44, g"QE@)\= 13,656, g"(x0) = 72.202,
gV (xg) = 537,078, g'(xp) = 4673, <=+>++=+=+, and 6) becomes

hz h} '\1" h’
= 1.2 + 4,44k + 13.656 — + 72,202 — + SITAT8— + 4973 —— + ceesessiiann,
Y g © 1A \0* 24 120

{
where h = x -x5. When x=1,1, h=0.1 and § »

¥ = 1.2+ 0.1(4.44) + 0.01(6.828) + o.on}'(iz‘.'bs) + 0.0001(22.4) + 0.00001(41) +++» & L.7270.

o3

3

A. Use the First Derivative Method, F.iﬁh'n = 4, to approximate y when x = 1,1, given that y=1.2
when x =1 and dy/dr = 3x+y%¢ '\'ﬁeie Problem 4b.

Here h =0.1 and we take.:il;&h2=ha=h4 = 0.025. We sesk yo+hit ky+tkatke = ¥st kas

Q&
Q) (%0,y0) = (1,1.2), (R = 0,025, fi¥o.Yo) = 4.44, ki = haf(ao,y0) = 0.111;
\:m}.. yt — y(] + kl = 1.311.
) (x1,y1) = (L& \, 1,311), hg = 0,025, f(xs,y1) = 4137, kp = haf(x4,52) = 0.1198;
AN y2 = y1+ kg = 1.4308.
©) (x20yanD) (1.05,1.4308), hs = 0,025, f(re,yp) = 5:1972 ke = haf(s2,ys) = 0.12993

3’3 = y2 + kﬂ = 1-5607.

0.025, f(xg.¥a) = 5.6608, ke = Raf(xaye) = 0.1415;

d) Xga, = 1,[}75, 1. 5609 ] h
(x3,¥8) = ( Ve x ys ke = 1.7022.

=ty

6. Use the Pirst Derivative Method, with n = 4, to approximate y when x = 1.4, given that ¥=0.2

when x =1 and 9‘1 = (x2 + 23’)*‘°
dx
0.1,

Here h = 0.4 and we take hy=hg=hg=hs

. = , = 0.1183;
@) (%0,¥0) = (1,0.2), hy = 01, Flxo,Yo} = V14 = 1.183, ki = haf(x0.¥0)

Jo = Yo+ ks = 0.318%
= = 1,359, kg = hof(xy.¥1) = 0.1358%
b) (x1,31) = (1.1,0.3183), he = 01 flrsayn) = 1380,

ya yg + kg =
flxg,ya) = 1-532 ka = haf(x2,¥2) = 0.1532

€) (3,¥2) = (1.2,0.4542), ho = O-1s 0. 6074,

Ya Yot ke =
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d) (xar¥s) = (1.3,0.6074), he = 0.1 flxa,¥s) = 1704, ke = Auf(xa,¥5) = 0.1704;
Fox yo+ ke = 07778

7. Use Runge's Method to approximate y when x =1,6, given that y =0.4 when x - 1 and dy/dy = -y
(See Problem 3b.)

Here (xo,¥o) = (1, 0.4}, h =10.6, fp = 1-0.4 = 0.6. Then
ky = hfy = 0.36,

ky = hf(xgth, Yo+ky) = 0.6[(1+0.6) -(0.4+0.36)] = 0.504,
kg = hf(xgth, yotks) = 0.6[(1+0.6) - (0.4+0.504)] = 0.4176,
ka = hf(xotsh, yot3k,) = 0.8[(1+0.3) -(0.4+0.18)] = 0.432,

R ox %(k1+4k4+ka) = %[0.3e+4(o.432)+ 0.4176] = 0.4176, and ¥ - yu * k = 0,8176.

The difference between this approximation and that found in Prcblewf;b"'lfrisns; from the fact
that £ =0.6." In finding the value of y when x = 1,1, (that is, h- 0. 1)\ the Tauylor series gives

¥ = 0.4+ 0.6¢0.1) + 0.4(0.005) -~ 0.4¢0.00017) + 0.4(0.0000[}42}\\’:« sesseerees a0, 46193,
while by Runge’s Method (&

N\
ki = 0.1(0.6) = 0.06, &y = 0.1(11-0.46) = 0,064, kys0.1(1.1-0.464) - 0.0636,

ke = 0.1(1,05-0.43) = 0.062, k= %(k, b aky + ko)yB0.06193, and  § - 0.46103,
..\;5
€
8. Use Runge's Method to approximate y when x =0.1,‘.‘g~1\'én that y =1 when x =0 and oy dx = 3x+ yz.

ol

Here (¥0,%) = (0,1, h = 0.1, fo = L0 Then
k, = hfy, = 0.1, ~

A
ke = hflth, yotk,) = 0.1[3(0+~@I,})+(1+0.1)’] = 0,151,
ko = hfGoth, %otka) = 0.1[R(O%0. 1)+ (1+0.151)2) = 0. 16248,
Ra = hitrorsh Yorsks) = @i1130+0.05) + (14 0.052] = 0. 12525,

=

1 " N
k o= NS _
ok dky+ ko) \:”}éio.1+4(o.12525)+u. 16248} = 0.12725, and 5 = yo + k & L.12725.

R\ (See Problems 2 and 4a.)

N
Ny

AN

9. Use Runge’s Methed to approximate ¥ when x =1,1, given that ¥=1.2 when x-1 and dy/dx - 3x+yz‘

Here (x6,y0) = (L, 1.2), h =10.1
ky = hfy = 0.444,
k2 = h’f(xo“'hn y0+k1) =

v fo = 444, Then

0.1[8¢1+0.1) + (.24 0.444y2] - 0.600274,

ks = hf(xoth, yotky) = 0.1[8¢t+ 0.1y + (1240, 80027} = o.654007
ky = h f{xo+ $h, Yotshy) = 0_1{3(1,'_ 0.05) + (1.2+0.222)2} - 0.517208
1 L]
B on S(k = 1
. 6( 1+ 4k4+k3) = E[O.444+4(0.517203) + 0.654097) - 0.527822, and

Y = Yo +& x 1,727822.
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10. Use Runge's Method to approximate y when x=0.g ¢
satisfying ¥ =0.41 when x = 0,4,

Here (x0,¥o) = (0.4, 0.41), h=0.4, fo =vG.81 - 0.9, Then
ky = hfs = 0,38,
ke = hfGxoth, yorky) = 0.4vT37 = g.50120,
ky = hf(xgth, ¥o+ky) = 0.4v1.7112 - 0.52325,
ke = hf(xgtih, yotky) = 0.4/1.15

0.43635,

1
kow E(ki + 4k, + ko) = 0.43811, and ¥ = yo+ k 7 0.84811,

11. solve Problem 10, first approximating y when z =0,6 and then, using this p\a:h- of values

{x0,¥o), approximate the required value of y.
NS

PIrst, (fo.00) = (04 0,41, h=0.2, fo =V0B1= 0.9 Thenl)
ky = hfo = 0.18, ' :.\'\\;
ky, = hf(xgth, yorky) = 0.2/T.19 = 0.2181';,;':\;’
ke = hf(xo+h, yotks) = 0,2/1.938T7 - §\2§165;
ke = hfGotsh, otk = 0.2, - (O

O
N
B oA é(ki + aky + ky) = 0.20028, LAId 7 = yo + k & 0.61028.

Next, take (xo,¥) = (0.6, 0.61023),,};~~'="o.2. Then fo =v1,21028 = l.1001,

$

ky = hf, = 0,2%002, ,~\\“

ky = hf(oth, Yorkp(s® 0.2/T6%030 = 0.25537,
ks = hf(oth, otk = 0.2/1.66565 = 0.25812,

hy = hf(eorihi Yordky) = 0.2/1.430% = 0.23836,

ko 5(!;;{94k¢+k3} - 0,23860, and ¥ = yo+k =~ 0.84888,

R\
12, solve Problemﬁ"l?i,‘ using the Kutta-Simpson Method,
/3
Here (x0,¥0) = (0.4, 0.41), h=0.4, fo = /081 = 0.9, Then
ky = hfy = 0. 386,
ky = h f (xot2h, yotiks) 0.4¢1.19 = 0,43635,

ke = hfrotih, yotiks) = 0.4/1.22817 = 0.4432%,
ke = hf(roth, yorks) = 0.4/1.65829 - 0.5143%

b1

ko %(k, + Oky + %hg + k) = 0.43893,

13. Use Picard’s Method to approximate y and z cort
tion of dz S
dy | flx,y,2) = 5+% — = g(x,7,2) = *-Y
z e &

setisfying y=-32, z=1 when x=0.

and § = yo +k % 0.84893.

193

or that perticulsr solution of dy/ds = vx ry

‘a5

esponding to x=0.1 for that perticular solu-
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For the first approximations,
x
¥1 = Yo ¥ j; f(xlyﬂrzo}dx
A
Z; = zZp t g(*,Yos2o)dx
)
For the second approximations,
%
Y2 = Yot fo f(x,y1,24)dx
%
Zg = Ig + ]l;g(xlyinzi}dx
For the third approximations,
X
Ya = Yot J; f(x,¥2029)dx
x
Zy = g ¥ j.; 3(1-32-22)&
and so on.
Wen x = 0.1:  yy = 2105
Y= = 2,08517
¥a = 2.08447

14. Use Runge’s Method to

systen %=x+/‘;=

NUMERICAL APPROXIMATIONS TO SOLUTIONS

2
2+ x + 2x",

%
2+ J; (1+x)dx =
- dx v $x°.

X
. 1+j;(-4+x)dx =

3
2+ x~312+ —115

x
= 2+ j;(x-aﬁix’)dx =

2 3 1.4 L s
= 1l -4+ =x =x"=-x - —x
4 20
% i \
= 2+ {1 - 3x - -x —x’—:{xtg Tz‘)u'x
i»‘§ u.
= 2+1—--12--1-15-1:I:“ —”;-3!-;6-——1—1’,
2 T4 T 120
x ‘x.\
= 2\ "7 5 31 1 4 1
_1+f(—4-3x+51,\—x_~1-§x = _Eéx)dx
N
= 1—4:!:--3:\:2«322‘1’3 lx“—§—1—15+ i.tc— 11?,
W\ 3 12 60 12 252
P\
2y = 0.605.0%
22=0.~5.§'397
Za ="3.a58’672.
L\
\\

approximatg\'{’\ahd z when x = 0.3 for that particular solution of the

dz
f(x-J’-f),-’:a =y-vz-= g(x,¥,z) satisfying y=0.5, z~0 when x=0.2.

_ N
Hi = ""'. I
ere  (¥u,¥o.2p) SEE\Z' 0.5,0), h=o0.1, fao = 0.2, g = 0.5. Then
ks = hfs’ = 0.02,
N\
1 gz}.go = 0.05,
.00\‘5
\4{2= hf(woth, Yotks, 20+1) = 0.10.3 + /605) = 0.05236,
Ta = hglxo+h, Yotki, z0+ly) = 0,1(0.52-v0.05) = 0.02964,
ks = Bf(xgth, yotk,, Z*tls) = 0.1(0.3+ /5.02064 ) = 0.047216.
la = hg(wo+h, yotks, zo+ly) = 0.1(0.52 - V0.02964) = 0.034784,
ke = Rf(rotdh, yordky, z9v4l,) < 0.1(0.25 + V0.025 ) = 0.040811,
Lo = hg(xgtih, yo+dky, Zo+ili) = 0.100.51- v0.0%5 ) - 0.035189,
1
R Z(hy + 4k k = 1
6 1 4 + Rg) 0-03841. { ~ E(Il + 41. + Ia) = 0.037539,
and Y = ¥tk v 0.53841, I = z,+ 1 ax 0.03759
0 L] - L

15. Use the Taylor Series Meth:

particular solution of d
dt?

od t i
s © Bpproxinate the value of @ corresponding to ¢ = 0.05 for that
- = ~8s8in &

satisfying 8 = 7y, j—g =1 when t =0,
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The given differential equation is equivalent to the system

dé '
E}' _qb:f(trgs(b)l _ c:;—f=-8 Sin9=g(t.5‘,¢a)

with initial conditions t=0, 6=7/4, =% Then

a8
E:B’:(i) 9';:1 . ¢,l=_8sin9 ¢°"=_4,/°2'
0"= @' Gy =-~4/3 ¢" = -88'cos 8 ¢y = -4V32
= " 9;' = —4y/2 ¢" = 8(9’)25111 £ ~ 88" cosf
1v " 1v i
g =¢ 8 = 4v2 +32 ¢y = 4V2(1+ 4V2)
£2 £3 £
and & = T4 + t — 4V2 — - 4/2 — 4 4(B+VE) — # rreveenein = 0. 82821,
2 6 24 A4
N
16. Use the Kuttg-Simpson Method to approximate y corresponding to x= 0".‘;1 for that particular so-
. dy dy . dy
lution of —= + 2x—= — 4y = 0 satisfying ¥=0.2, -==0.5 whei“x=0.
dx? &Y Y dx \K *

WV

The given equation with initial conditions is equivelést’ to the system
\/

- = Z = f(x.y.z). 2 :,'41’“\%3 = g{x,y.2)

dx BN

AN\
with initial conditions x=0, y=0.2, z=0.5{)"

Here (%o,¥0:20) = (0, 0.2,0.5), k=04 fo = 0.5, go = 0.8. Then
k, = hfo = 0.05, ~3%
L\
I, = hgy = O.Q{}\\
ky = hf(xo+%*\<?éi%k1, z5+8l) = 0.1(0.54) = 0.05¢,

hg(etdh, Yorbk, tl) = 0.1(0.846) = 0.0846,
ky = f{-ﬁ&o’*'%hs Yotikas Zothly) = 0.1(0.5423) = 0.05423,

ta\é‘}isg<xo+gh, sotbkas zotbls) = 0.1(0.85370) = 0,085377,
{\ = {,1¢0.58537") = 0.0585371,
a3

=
[~
"

Bas = hf(xoth, Yotks, Zotls) =

9
N

l(kl ' 2k2 4 2k3 + k4) = 0,0541663, and ; = ¥ t+ k == 0,25417.
&

\ »
R\

\/;
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17.

19‘

20.

21.

22.

NUMERICAL APPROXIMATIONS TO SOLUTIONS

SUPPLEMENTARY PROBLEMS

Approximate y when x=0.2 if dy/dx = x+y and y =1 when 2= 0, using a) Picard's methog,
b) Taylor series, and ¢) the Pirst Derivative method with n=4,

Adns. @) v, = 1.22, ¥, = 1,2657, ya = 1.272T by 1,2735, ¢) 1.2503

Approximate y when x = 0.1 if dy/dx = x—yz and y=1 when x=0, using a) Picard's method,
b) Taylor series, and c¢) the First Derivative method with n =4,

Ans. a) y; = 0.905, y, = 0.9143, ys = 0.9138; b) 0.8138;, «¢) 0.9107

Use Runge’s method to approximate y when x=0,025 if dy/dx = x+y and y=1 when x =0,
Ans. 1.0256

N
Use Runge’s method to approximate y when x=2.2 if dy/dx = 1+ y/x mgtt;y.% 2 when =2,
Ans.  2.4096 A\
N
Use Runge’s method to approximate y when x=0.5 if dy/dy = \{.‘t’fﬁ’y and y =0.17 when £=0,3,
Ans.  0.3607 !
7.\
Solve Problem 21 using the Kutte-Simpson method. N\(“dns. 0.3611
\l

\..

Use Runge's method to approxlmate y and z when .‘c 0.2 for the particular solution of the

system dy/dx = y+2, dz/dx = x%+y ss.t1s£§fing ¥=0.4, 2=0.1 when x-0.1.

Ans. y % 0.4548, z = 0,1450 . ‘,“
.\\

Use the Kutta-Simpson methed to, a{ﬁi:oximate y when x=0,2 for that particular solution of

2
dy dy A d
— 3x£ +ty=0 satxsfy,rgg y=0.1, .d_i = 0.2 when x=0.1. Ans. ©.1191
' \¥/
:.\'w’
\{:}{.
QO



CHAPTER 25

Integration in Series

EQUATIONS OF ORDER ONE. The existence theorem of Chapter 2 fora differential equa-
tion of the form

)] & f
™ {x,¥)
gives a sufficient condition for a solution. In the proof using power seriés,
y is found in the form of a Taylor series "
2 N
2) y o= A + As(x —x) + Ap(x—2)" + cesver ¢ Aﬂ(x—xﬁ)’.‘.+ ceeann,

where for convenience y, has been replaced by 4,. Tbis§~'§eries i} satisfies
the differential equation 1), ii) bas the value y=y§iﬁrhen X=Xq, and iii) is
convergent for all values of x sufficiently near {: .

A. To obtain the solution of 1) satisfying the con@it’ion ¥ =¥, When x=0:

A \J
a) Assume the solution to be of the form L

y = A5 + A x +A2X2 +A3x§;:q.‘;a..u + A‘nxﬂ' $ oaeanes
in which A, =y, and the remaining ,;4?’5:‘ are constants to be determined.

b) Substitute the assumed series‘.:,{i:r; the differential equation and proceed as
in the Method of Undetermined Coefficients of Chapter 15.
R :

K
EXAMPLE 1. Solve ykai'+y in series satisfying the condition y=yo when = 0.
e valued and continuous while 3f/dy =1 is continuous over

. 2 73N,
Since x, = x\hN: 1s Singl
flx,yy = 25A% the conditions of the Existence Theorem are

any rectangle of vaJ\ues (x,¥) enclosing (0,¥c),
satisfied and wesassume the solution

C > “ ﬂ’ LE R R N
~l’.\y = Ag + Agx + Azxz + Aa;"5 + Agx o orererr ¥ Ayt
Now, withi¥ the region of convergence,. sries
vielding’ a series which converges to the derivative y'.

this series may be differentiated term by term
Hence,

n=1l
g1 = Ay + 2A0x + BAgH” + A0 + eorrer +nAnx F

wnd 2 5 eenennan
¥ P y = (44 - Ap) + (24, - A% + (845 = A - 1T+ (444 - A)¥" +
n-l IEEN RN =
+ (g = Apoadx T 0.
or all values of x in some region surrounding x=0, it is

In order that this series vanish f ¢ each power of % venish. ThuS,

necessary and sufficient that the coefficients o =
A, = Ag = ¥ 3A3—A2—1=0 and A3=§+Ey0'
Ai - 440 =0 and 1 = Ap Q» o N 1 + Ly
24, - A, =0 and Ay = %A,_: %Ac.: E,’)’o- 44, ~ Ag = a5t
n > 4,

1
nAp - Apey = 0 and 4n = 3 An-gs =

197
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INTEGRATION IN SERIES

This letter relation, called a recursion formule, may be used to compute additional coef.
ficients; thus,

1 11 T N
Ay = tho mrampte Mg T R T

It is also posslb]e to obtain the coeificients as follows:

1 = 1 = l LELE B

Since An = —An.., and Ap.y = -"—"'iAﬂ,-Qo Ap = Py Anezs But An., . :

hence, A, = 1 Ag = - (1+ 345) = if?*)‘o). nzs,
’ R=1) (1=F) =+ o4 A(n=1) (n=2)++v++4+3 nt

When the valués of the A’s are substituted in the assumed series, wo have

1 2 1 1 5 1 1 ¥ 1 A n
) — oy + fA— + TETEAE g _(__.‘ \‘) F orarery
¥ Yo + YoX + ‘23'01 + (-3+ 63’0)1 (—12 2430}«" nt \r\}‘ *

- e, 13 ... L _ LAY -0
= (y0+2){1+x+ax +3|x + —fn—lz + ) O -2

= (_yc,+2)ex—:|:2 - 2x - 2,

The glven differential equation may be solved using the Thtegrating factor o thus,
\J

~ K2 X2, .
fxe = (—x -2 -De s and y = Ce” = 2" — 2 -2
\\

\

Using the initial condition, y =y, when x =0, C ~~y° +2, and y = (yn ¢ et - > -2,
‘as before,

N
S
R
a
N

B. To obtain the solution of 1) satisf\&i;{k the condition y =y, when x - x,:

tion satisfying y =3 when v =0; hence,

a) Make the substitution x -#o.® v, that is,

7

.‘QX\: V+ X5, g:‘:’y

& &
resulting in dy/dw ’;"'fF(y. ¥).

b) Use the procedureéof 4 to obtain the solution of this equation satisfying
the condltlonbv’—ya when v=0,

c) Make the iﬁl?stltlltlon V = X-Xo in the solution,

)
EXAMPI.\.EVZ Solve y! = 4% -4x+y+1 satisfying the condition y -3 when x = 2,

First make the substitution x = v+2 and obtain gz = w® 4+ y~3 ¥e seek the solu-
U

We assume the series solution

Y = 3+ dyv +A2v2 +A3v5 +A4v“ +otraessens +.4,;v‘rl

F o rrdaarran

d:
Then X - 4 o434

du aU A4 4 e, + ndg™

F orara s
and
dy

2
-~V —-¥+3

o = A+ (24, -Av o+ (344 -

2
Ay = 1DY" 4 (4A, = Ay + rrermeeene
+(nA”‘Au-1)Uﬂ-1+ trennaass =0,

Faueting the coefficients to zero, we have: A1 = 0, 24,-4
' BRLH ]

345-45~1=0 and Aa = 1/3, 44, =0 and A, = 1/13 DO mdda=o,

LR RN N N
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The recursion formula Ay = -l-Aﬂ_i yields
n

1 1 )
A-n = —A‘R..j_ = A’Yl e = T = 1 2 >
- A = —_— = -
n n{n -1) n(n =1 =2)--4 e nl n:3
_ 3 4
Thus, Y = 3+ gt’ +_E‘u LR R rTl_v + errassesennr
- 34 2 3 [ 2 n
+ (x-—2) + —={x-2) + o trrsansraseins + —(x D) + rraaage
nl
See als0O Problems 1-4.
LINEAR EQUATIONS OF ORDER TWQ. Consider the equation . \~
. A\
3) Bx)y" + Px)y' + Py(x)y =-0

O v
where the P's are polynomials in x, We shall call x=a\ail erdinary point of
3) if P,(a) # 0; otherwise, a singular point. AN 3

W

If x=0 is an ordinary point, 3) may be solved :in series about x=0 as

4) y = A{series in x} + B{sg?'ﬁ'és in x},

NS ] )
in which 4 and B are arbitrary const_ants".' “The two series are linearly inde-
pendent and both are convergent in 'z}.qx;egim surrounding x=0. The ;_:rocedure
for eguations of order one in the sec}t'lon above may be used to obtain 4).

N See Problems 5-7.
...:\\ S :
¢{SOLVED PROBLEMS
EQUATIONS OF ORDER ONE:
O
\in3s;eries satisfying the condition y=y, when z=0.
l—xi\
N 2 3 4 n
ASsume th@:'é;\effies to be ¥ =A0+A1x+A2x +A3x +A4x + traane +Anx P N
S
where A, = yg. Then ¥

1. solve dy _ 2x-y
dx

2 Pl e
Ay + 2px + 3Aox + 44D & eeren d ndnx .

Substituting dn the given differential equation (1-x)y'-2x+y = 0, we have

2 3 vene b Fid g g reeran
(1—x)(Ag + 24p% + 3Agx + $Ax7 + ** + Az 4 )

L
2% + (Ag F Aax b Aot + Agx® + vesess + Anx + erveer) =0,
or

3 . cear 1 _(n—l)Aﬂ]xn Forves = 0,
(41 + Ap) + (24, - 2)x + (345 —Ag)xz + (4As —2Ag)x” F + [(n+Ddnay

he line immediately above, we DAY write a number of
f the assumed series for y, differentiate each in

- i “ learn to
getting y!, cerry out the required multiplications, and pmkdOUt tlileeste::: izsxdefﬁfative. In
write the ;'equired term using the general tern O:hthe ;S?i]:xtiosnesr are made in y'~xy'-2x+y

term in x™ when the sSubS n=1
1_:h§ prz:-:,enz Droblemdw:h:i::r;hin % of y' when we have the term in x” . We simply replace n
= 0. irst, we nee . .

(Note. In finding the general term int
terms on either side of the general term O
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44@1 ( 1)Aﬂ+ The T maini £ - Aﬂx + )1,”;: are Ob\f . )
]Iy n+l Yy 1X Tidnx ﬂ.]ld ()bta It i » I ious
( 1 n+ x 141 n. terms n

d
Equating the coefficients of distinct powers of x to zerc ylelds

0D and A —lA .
A1+A0=0 and Aiz"AOt 3A3_‘4‘2= a 3 2 3
1 1
- = 2 A, - 2,
24, -2=0 and A4, =1, 444-24; = 0 and A, 27§
and Aney = 22l an, iz o).
(ﬂ+1}An+1 - (H—I)Aﬂ = 0 n+1 n{,x
ne2 SN GEok )L Gk ) R ek )} Gk 2 K ik O
Now A‘Yl = _n A‘ﬂ.-l = - ﬂ(ﬂl _'1') ™~ -2 n(n - 1)(n -2
.&\
“oB@-He-fedl, L 2, oaza N
nn —1)(R=2)resveenssnaded nin-1) m(',“,
\J
2 1.3 1 Loy 2 B e
Thaus, Y = Yoll-x)+ x + -éx + Ex + Tb—x + +’:,{'—?—X 5 x
® O
{1-x) + 2 X
Yo ne2 n{n-13 ’:'{\.z
A'n xml x\\;;:—l
Using the ratio test, lim |ZB22Z | _ || 14 = |l
nom Anxn R n+1l

The series converges for |a| < 1, RN

N
3

Note. By means of the integrating fachér™1/(l-x) the solution of the differential equation
is y = 2(1-0)ln(l-x) + 2v + C(1—x);\">rhe particular integral required is

Y = Yo (¥} + 2(1-x) In(l-x) + 21,

\&~
2. Solve (A-xy)y"~ y = 0 An'vowers of .

Assume the series t{\hN y =
{ ” y!

, O

(1~ Aox - Ayx® — A0® — A2 il Apx™*1

n
A°+A1x+A2x2+A3x5 b Agx 4 e Anz" 4+ +eser.  Then

-1
A1 + 2:"@1 + 3.43:;2 + 4,4‘;3 F orresa g nAﬂxn 4 ===+« gnd

(1-xy)y" -

= teer) Ay + 24,x 4+ 3A3x2 + 4A4x5 oo

el
+ g™ 4 RS SR ¢ +A,_x+A,x2 +Aax5 LEETTTRRRY Hyo L O

2
= (Ag-Ap) + (2As~AgAy-A )% + (3A3—2A0A2—A1—A2)x2+ (444'—340‘43—3‘41‘42"43)"‘5 doeeen =0
Equating to zero the coefficients of distinet powers of x,

A1—<40=0 and A1=.40,

245 ~ ApA, ~ A, = and A, = SA,(1 4+ Ay = $Aq(1 + Ag),

2 2
R S A3=§(2A0A2+Af+.42) = éAo(1+5Ao+2Ao)-

e = BoAs - 3414y — Ay - 0 ang Ay = 51; Ao(l + 174y + 2642 + 642),

...accnl-acc-c--a-a-c-o-.oa.o-occqu.--oc-a-
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- 1 2 1 ’ L
Thus, ¥y = Acll+ 2z + o1t Aode + 5?(1+.5A0+2,40)x5 N 4—1(1+17A0+26A§+ I N |

We shall not attempt fo obtain a recursion formula here nor to test for convergence,

3, solve xy'-y-x-1=0 in povers of (x-1),

Setting x = z+1, the equation becomes (Hl)g -y-2z-2=0, Since we seek its solution

in powers of z, assume the series Lo be

¥y = A0+A11+A2z2+A5z3+A41“+ cerrineen +Aﬂz“+ vseessser, Then
! . -

D Ay o+ 2z + 3427 4 4A4;3 Foereirne b AT 4 seremces and
dz \\

A
o X

d.y
z+ Iy = - -z -2
( ), Y

'~./} A

_ (24 1)(Ay + 2452 + BAgz® + 4420 + vreee s nag™t +m\\1
—2—2-()10+A11+Ag£\(+ Aaz reaes +Aﬂzﬂ+--»n)

(A, — 2 = Ag) + (24, - 1}2‘, + (345 + AQ)Z + (M‘\\tms)z + asanavennn
+ [(n+ Dngs + (?\:‘”l)ﬁn]z R
\"
Rguating to Zero the coefficienmts of the dl‘stiuct pOweTs of z,

.‘N

~ ™ 1 _ 1
Ay -2 ~Ag =0 and Ay~ 2+A?;j£~ 3hg + Ap =0 and Ay == zdy = -
e - I 1
24, - 1 =0 and A, = 360 Sh,+ 2o =0 8 Ay = She = o
¢ &\J
""“: n-1 5
\ . - > 9
(l’l + l)A’IL\’i“, /(n I)An = 0 and Aﬂ+1 ot An, n=
& _ : _
)
A\
Q 2-1 r
n (n_z)(n_sj..'... * = -1) r R ; 2,
From PSQ?E?M 1 Aﬁ = 1 n(n_l),,....cioc-4'3A2 ( n(n—l)
' 4
12 13 1 “....--..4-'_1"l 4 oawraan
and y = Ao+(2+A0)z+§z -—ﬁz +-£-2-2 . -1 EYSET
Replacing z by {x —1), we have
1 2 1 __'5 _l,x_]_)q' - waasrassas
y = Aox + 2x-1)+ E(x—l} - -G(x 1+ 12(
. n 1 n
- —_—(x-1) .
= Agx + 2(x-1) % z;z( 1) n(n—l)(
Anuzﬂu = |z{ lim nol . |zt = e -1/,
Using the ratio test, lim A, = pom ntl
n—n z

The series converges for lx—ll <1
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4. Bolve y,_xz_ey =0 satisfying the condition y=0 when x=0.

Then ¥

In view of the initial condition, assume the series to be

» 5 LA RN
Azx +A2x2 +A335 +A4x +A6‘r + rireww .

he 3
1

4
Al + 2A2x n 3A3x2 + 4}14113 + 5A°x + rrdbaerees

L

1 2 1 1
Also, e"=1+y+2—|y T A

3 4|

1]

1 2 2 b] 2 " 4 e
1+ (A1x+42x2+A315+A4,x“+--w] + 5“11 #2A4A,x7 + (A, 4 24,4 ) tarenns]

i "
N7 R YL TR U TrARE ey 4 e
31 Iy {
% \
1 s AN
= 1A+ (Ay4 %z‘l'::)ar2 + (A + Agdy 4 EAi}x5 ...\: .
(A4+-A, +A,A3+-Ai4‘{\+ _,4 bt .
Substituting in the differential equation, "
)
\0'

¢ 1,5 3
(Ag - 1) + (UamA)x + (345 - 1 - 4, - —A,_)x +\,Qi<1‘: - Ay - 444, ~ gflm

2
+{SAB-AA_éAE"AlAB'"_A:LAE""—‘Al)x L T LR T | N

24
Equeting coeff1c1ents of distinet powers of x to zero,
L\
A - 1=0 and A,=<L,x\\ A=Ay =0 and A2=%A %
1., 2%\
o = 1~ Ay = 145 20 dAa~-(1+A2+—A1) g
- 3N 1.5 1
44, - 4, ":{1{{ -’-EA,~0 and 44-—(A=,+A,A2+ Eati) =§-
x\i' 2 2
5145'- ‘-:;-Z-Ag —A’.Aa—-—A’.A2-—l‘.A1 0 and AB = E. SRR I
O
- 2 2 3 1y 17
and = x £% = - 2,0 P
b \,\:“'2x +3x +3x +60x + reertua
/ .

LINEAR EQUATIONS OF ORDER TWO.

A. Solve {1+ xz)y” txyl —y=p

in powers of x,

2
Here Py(x) = 1+ 22, Pot0) 0 and % = 0 1s an ordinary point,

We assume the series

Y = AQ+A1x+A2x2+A3x5 +A‘x“ o orairsnan, +Aﬂxﬂ+ rrrsasann,
Then J"’ = Al + 2422: + 34312 + 4A4x5 L T S nAmxn-l LT RPN
and y* = 24, 64z + 12‘4‘x2

+ oteenains g n(n_l)Aﬂx”’—z + wrrsacaas
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Substituting in the given differential equation
*

2 . 2z
1 Y[24, + 644% + 124 vens 2
(1+x )[24, 3 T MR CLED 7. M Z(Ag+ 2px + 3A3x2+ 4A07 +anns

-1
+ HAnx toreaay {AO + Aix +A2x2 +A3x5 + A‘x“ Foeeen 4 Anxﬂ+ crer) = 0

or (24; ~ Ap) + Bdgx + (124, + 3A9)x2 oaera 4 [(“*‘2)(“”))1“2 . (nz—l)A,;]x”h-.. - o

Equating to zero the coefficients of the distinet powers of x,

1
A, ~Ay=0 and A, = EAQ! 643=0 and A,=0, 124,+34,=0 and AA:‘éAO, PR

2+ Dy + (A7 -1y = 0 and  Aney = = 22t A,
+ ;

From the latter relation it is clear that 4, = Ay = .A, = sear =0, that ‘is;\d,”? =0 if n
is odd. If n is even, (n = 2k), then A
2k -3 (2h - 3)(2%k -5 B+l 135"---- ok -3
A = = " 4 _ = AT vAAER ~7 = veews = -1 ( ) A
ak 2k 2k-2 2k(2k—2} Azk-'l ( } N". oo 2 kT
o ?
Thus, the complete solutign is '\;.
12 1« 16 5 &
= Al + =x - =x + —X = —x 4 )M 4
¥ o { 21 Bx 1B:vc 128: '\;) Ayx
'xt\'
0
= A1 + 1;2 + 2(_1}“1 Mﬂixﬂj + Agx
2 . -4
k=2 ‘2 fk'-

.‘

Ao[l + _x z( l}k 1-3-5;-;..(?}! 3) 2k] . Ax.

L]

2" k!
\\
x..x\
n+2 ¢ W :
Here lim |2ns2® = ;8 lin ™= - %% and the series converges for |x| < 1.
noe PP PR nt+2
AN/
Fe g
\{u:}{.
2.y \\
f. Solve y" - x"Q’ ‘. ¥y = in powers of x.

Here P\&i 1 and x =0 is an ordinary point. We assune the series

. - cavrarear, Then
y = A’Lc;+Aix+A_2:|c2+}!l=,::c5 $oavseneees + fpx +

+ [EEERERLE RN .

fml
y! = Ai + 2A2x + 3A3x2 4 oassvraanes + nA”x

=2
y" = 24, + BAsz + 124,27 + 20Agr’ + eereecres + A(R= Ddnx 0+ - , and

H

yﬂ' - x y y
= - Ao) + (64 = Ag)x + (12A4
"+ [{n+ 2)(n+l-1)A,;+2.

4 vesacasrrrEEEs.

Ay - AEt ¥ (Whg - g - A7
ﬂ —
—(n-l)An_i—An]x 4 sravesaarraasys = 0. -

Equating to zero the coefficients of the distinct powers of

. . '
242_4: -.0 and 4 1 64 4 =0 Hnd 45 = "Aj 12A"‘A’-A2-0 a-nd A4- —bAo'I- «—-A1
2 2 L} 3 1. 6 ' . 24 12

anaws
oo-ct-o-oc-t-.oo-o-oal-oc
- !
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(n-1DAp_y + 4y

- 2 ————— T, 2
(n+2)(n+DApes — (M=DAn_q 4 = 0 and Anee n+1)(n+ 2y b
1 2 1 v i L] 1 b 13 1 i
The Cl)m.plete solution is Ao(l‘f Ex + ﬁx + E)-x + 7201 + 25%.‘[ + 3}
15 1 ] T ¢ 41 3
- —x + —x + —x ¢ X+ ervasa,
FAaln e oty 12Jr 120" 360 5040 .

. Solve y" - 2y + dxy =x + 20+ 2 1in powers of x.

Assume the series to be

n
y = A0+A1x+A212+ Aa:r5 +A..:vc“+4‘||3x5 R P e R R Then
¥y A+ 24 4 3A3x + 4A‘x + SAax“ LR R rnA,,x + \'}.
yn= 2‘42 n 64432! + 12A4x + mABx + rhanrrrareaea 4 n(n_l),‘]wn‘ smevas . and

".:

y"—zxzy’+4xy—x ~2-2 = (245 -2) + (6A5+ 44y - 20x + (124, +2A,—1‘)x ' ..’I}A,;x5 IETITIT
[(n+2)(n+1),q,“,2 - 2(n- x)A.,m{\»f 4A,,_,1] Poeresans = oQ,

Equating the coefficients to zero, we obtain

N 1 1
24,-2 =0 and A,=1, G6Ag+ 445 -2 = 0 and Aa-l—gﬁo, Ay = = = Ay, Ag = 0,
KN 12 8
O 2(n -3) >
N+ R+ DAnee - 20~-Ndpy = 0 and, VWApy, + =1 "1 A, ., n23
N n+ 1yin+ 2y
The complete solution is ,
3 23 2.6 2 g o 1 1 7 1 1
¥ o= Al -2y - £ RV 4 - Mess} o+ - - _ 2 - e esansass
ot -3 45 205 \'\ L 567 )
”uzxui;}l L A L 1o
12;" 45 126 405 1134
A\
8, Solve ¥+ (x - Lyy! ?-..\3(\=0 in powers of x -2,
Put = \w‘ : : dz d
ut x = v +2 ~ﬁx\ he given equation and obtain -—% + (v+1}d—y + ¥ = 0 which is te be
~ dv v

.n\. 2
integrated m*;’m’ers of v. Agsume the series
/

Yy = g+A,_v+A2v + A7 4 A

41_; +""""'+4'nv Forreernans, Then
o Ay + 24,0 & 34.0° 4 aped n-l
dv 5 L +o---00---+nﬁﬂ‘u L
2
4y _
wz 2, + 643y + 124,07 + eivnvenns, +nn - DA™ 2 . cieeeeean, and
2
d’y dy
— + (v + 12 4+ =
2 e Az + Ay + Ao) + (64, + 24, + 2400 + (124, + 34, + 3407 + serrere

* [(n+2}(n+1)4n+2+ MDA + (Rt DAy, Jo™ ¢ cevrvnner = O

Equa.tlng the coefficients of bovers of v to zero, we obtain

Ag = = = = _
m"””' As “A=+A)-~(Ao Ay, A4=-ém2+43)=f§o«tc+zm.

DO Dhuss + B Dy + (na 14y, - g

and Angz = ~ 7 :'2(:41; + Anssl)s
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Thus, noting that v = x -2, the complete solution is

1 2 1
¥ - A {1 - _(x_z = _ 3 _1. [ 1 1
o 3 )+ G(x 2Y + 12{x -2} - .2.0.(,;_2)5 E(__-,;__,2)" + arened]

tAl@-2 ~2aon? Ly gp L, g8 1 6
3 ”'.‘ B{x 2y + §*-2 h.éé(x_z) Joaseane]

SUPPLEMENTARY PROBLEMS

2 ) :
9. Solve (l-x)y'" = x —y in powers of x,

Ans. y=Acl-m + S i Lot L2 L,
3 6 10 (n+2)(n+3)

~

10. solve xy' = l1-x+2y in powers of z-1. Also integrate directly.,  “\

Hint: Let x-1=:z and solve (z+ 1)3_3; = -z+2y in powers of z, (\J)
O

Ans, y = A(1+ 2x~1) + (x=1°] 4§+ (x=-1) A\
ON

V4

11. Solve y’' = 22 +3y in powers of x. W\

Ans, y = Agll + 3x + 9z /2 + 9x3/2 + 27x /8 + ......] + (2:5/3 +x /2 $ oavsern)
\/
INAY

&

12. Solve (x+Ll)y’ = x2—2x+y in powers of x.

Ans. y = Ao(l+z) — 52 + 2073 = 273 + &5 — '/15 + oeenns

NN
3

13. Solve y"+xy = 0 in powers of x. ’f;

R.F. 4y = - Anes s n 280
n(n. 1) ,\

Ans. ¥ = Ao(i - 2/6+ xéz

convergent for all x.

a
v 7
—eeeens) + Ag(x-x 12+ x /504 = vesven)

14 solve y"+ 2xzy =0 in powers of Z

R.F. Ap = - —--?AA- Ap.o ; convergent for all x.
n(’\-‘ 1

-~ 5 9 senmes
Ans. y=AB{L};x/5+IR;’153““"“) + Az - 2°/10 + x°/360 - )
A

.'\
15. Solve y"_xy‘f‘-io xzy =0 1in powers of x.
R.¥. rt(n—l).d-n — (n=DApey + Anes =0 B2 & .
Ans. y = Ag(l - 2*/12 = 2/90 + /3860 + o) + Ay (5 + /6 - /40 = x'/188 - -2 0)

. . ti
16. Solve (1-x%)y”-2xy’+p(p+1)y - 0, where pis3a constant, in powers of x. (Legendre Equation)

(n-2-p)n+p-1) 4 . convergent for x| < 1.

R.F. Ap =

nin=-1) _
. 2 (pe2pEFLMEE Y )
Ans. ¥y = Ag(i - P_(E.:Z_T.Bx + P T x
' 3y - 4
Chp+) 3, p=RE-VEIACEH S
+ Agtx — —(‘1—;—!(';)—"_"‘ + _ 51

i .
R.F. An = convergent for all

. Solve ¥+ xzy = 1+x +x2 in powers of x. T a-1 B

a ? -_— e han
Ans, ¥ = Ao(l - /12 + xa/sqz e nerese) F Aglx =% Ja + x°/1440 }

. b ? - 8 [N NN
a2 A0/8 $/12 - x°/60 - 2 /B2 % /672 +

a



CHAPTER 26

Integration in Series

WHEN x=2 IS A SINGULAR POINT OF THE DIFFERENTIAI. EQUATION
1) Pox) y" + Pi(x) ¥y’ + Py(x)y = 0,

in which P;(x) are polynomials, the procedure of the preceding\\chapter will
not yield a complete solution in series about x =a. N\

P
2.7

EXAMPLE 1. For the equation xzy”+ (x’-x)y’ +2y=0, =0 1Is g'g}sifigular point since

Po(0) = 0, If we sassume 2 solution of the form PAY

2 N
(i) ¥ =Ag + Agx + Agx +A3x3 + .......<;§
and substitute in the given equation, we obtain A\

o + Asx + (2Ag+ A)x" + (5Ag+ 24080 ANEeeiin < 0,
27 £

In order that this relation be setisfied identicauy',\: ft". is necessary that 4, - 0, 4, = 0,

Az = 0, Ag = 0, ++++; hence, there is no series o{'}the form (i) satisfying the given equa-
tion. \¢

s
N
NS
. D
"
L 2
N

A SINGULAR POINT x=a OF 1) IS cm,r\a’zéiug IF, when 1) is put in the form

_ SO
1" y* +;Y—R‘(”‘) y' v Kl g
\ —-a (x - a)?

»

Ri(x) and R,(x) can be&xpanded in Taylor series about x=a.
I

EXANPLE 2, F‘o{\’tﬁ’e equation {1+ x)y”+ 2y’ ~8y=0, x=-11s & singular point since

Po(-1) = 14 (-1) =b, ¥When the equation is put in the form
o
o Ridx) Ry (x -
O TRy e 2B }zy = ¥+ yoo 3EtL
(x+ 1) x+1 (""'132

the Taylor expansions about % =-% of Ry(x) and Ra(x) are

Rexy = 2¢ = 2{x+1) -2 and Ra(xy = —3¢x + 1),
Thus, x = =i 15 g regular singular point,

EXAMPLE 3. For the o

quation x° ¥y 2yt =
the equation in the form Y Yry=o.

¥=0 1s a singular point, Writing

it 13 Seen tha-t Rﬂ(x) = l/x Cannot be e es about x = 0. ']h],]S.
X anded
D 11‘1 4 Ta-y].or Seri 5 b 1N}

206
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= A REG .
WHEN Ef ghésform. ULAR SINGULAR POINT OF 1), there always exists a series solution
r i :
2) = 2 = onm + A1Xm+l + A2Xu+2 + e § Anxﬂ‘}n LR RN

with A, #0, and we shall proceed to determine m and the A's so that 2) sat-
isfies 1).

EXAMPLE 4. Solve in series 2uy" + (x+1)y’ + 3y = 0,

Here, x=0 is a regular singular peint, Substituting

y = onm + Ai)c:m+1 + Aex“z +oreans 4 Anx’_H"'Jr teens,

y' = mAsx mel, {m+ 1)A1x + (m+2}.4,:rwH 4 eenne 4 (m+n)4n:“m 1, ....\\

y? = (m-DmAox” 2 + m(m+ A" +(m+1}(m+2}}12x toaes 4 (m+r1-‘1)(m+n)Aﬂxmn'2 P
in the given differential equation, we have \\“

(1) m2m- DA™ 4 [(R+1)(2+ DAL+ MDA 5" + (AR (2 +3)Ag + (R +4)A, ]2
AN
F oeawes + {(m.;.n)(g,prm_lmn + (m+n’+})4”_1]x“+” + veasawnens = {1,

\ \

\
Since Ay # 0, the coefficient of the first tem\wlll vanish provided m(2m —1) = 0, that is,
provided m = 0 or m = &, However, without rega.rd to m, all terms after the first will vanish
provided the A's satisfy the recursion formula

m+n+2

= - Ag_1. nZ L
o Q\+§)(2m+2n-1) i
Thus, the series x '\\
I _— n, ; x+3 . (R+3)(m+4) K
2 Y AO:'U (R+1)(2n + 1} (R+1){m+2)(2m+1){2m+3)
(N
"\{‘ (R+4)(m+5) xi + tcooclnaoc]

’o

T e LymeD) (2m+1)(2m+3)(2m+5)

satzsﬁes\ths equa.tlon .t
{ii) \’ uF” + (x+DLF + 3¥ - a(2n-DAex .

- '
The right hand member of (ii) will be zero when m=0 or m=%. When m = 0, we have from 2')

with A, = 1, the particular solution

i y, = 1- 8x + 2;2 - 2;5/3 Foavesener,

and when m = % with 4o = 1, the partlcular solution

ya = VE(L - T/6 + 20x°/90 1027/80 + eeerer)s

The complete solution is then

Y = Ayi + By2 ) . o
3/8 4 eeeea) * BVa(l - /6 + 21x° /40 ~ 1127/80 + )

= Al -3+ % -
. the coefficient io the right hand

; i also,
The coefficient of the lowest power of x in (1), (2
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member of (ii))., has the form f(m)A;. The equation f(m) =0 is called th"_m‘_f“-‘ tel equation,
The linearly independent solutions ¥, and y, above correspond to the distinct roots m=Q

and ® = % of this eguation,

In the Solved problems below, the roots of the indicial cquation will be-
a) distinct and do not differ by an integer,
b} eqmal, or )
¢) distinct and differ by an integer.

The first case is illustrated in the example above and also in Problems 1.2,

When the roots m, and m, of the indicial equation are equal, t.hn‘solutions
corresponding will be identical. The complete solution is then obtuined asg

- Yy

= A + B—=

¥ ¥ nen, Py

&.e\\ Problems 3-4,

N 3
- >

O
When the two roots my < m, of the indicial equation  @if

LR T e
PN i‘er by an integer,
the greater of the roots m, will always yield asolution’while the smaller root

m, Ay or may not. In the latter case, we set A, =@8§(m~m,) and cbtain the
complete solution as \/

PN
- WD

y = 4y + B4 © See Prublems 5-7,
’l=ﬂ1 :Bﬂl ﬂ.-l:

3
%

&l ¢

The series, expanded about x=0, w’hlc'h appear in these complete solutions
converge always in the region of the\complex plane bounded by two circles cen-
tered at x=0. The radius of one.of‘the circles is arbitrarily small while that
of the other extends to the finite singular pointof the differential equation
nearest x=0. It is clear ttgﬁ,,the series obtained in Example 4 converge also
at x=0; moreover, since 1:.h'e ifferential equation has but one singular point
x=0, these series converge for all finite values of x.

&/
o
COMPLETE SOLUTION, OF
Q
3) AN Bo)y" + By + Py = ¢
consists‘ef)the sum of the complementar
and any particular integral of .

tegral when 0 is a sup of iti
Problem 8§, pesitive

¥ function (complete solution of D),
A procedure for obtaining a particular in-
and negative powers of x is illustrated in

impractical,
To solve an equatiop in s
the point at infinity". e t
stitution

eries convergent for large values of x or Mabout

ransform the given equation by means of the sub-
X =1/z

and solve, it DOSgible, the resulting equation in series near z=0.

See Problems 9-10.
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SOLVED PROBLEMS

1. Solve in series szy"—xy’+ (<2 + Dy = 0,

Substituting
y = onm + Aixml + A2x1'+2 LR I S TP
¥ mAgx™ T+ (R DA™ b (R DA™ b v & mrn)A® Tk e
y7 = (m=DmAox" b (m+mAsxT 4 (R4 DAgaT F reree b (mEnal)(mtm)Agxt T 2 ees

in the given differential equation, we obtain
o &\
N\
(m—1) (2m - 1Agx" + m(2n+ DA™ + {{(m+2)(2m+ 1) + T4, + Ao}x":’z\

’“’”4. sasrnaas ‘—\ g.

+ {[m+n)(2m+2n-3) + 1]4y + Anoy}zx

Kow all terms except the first iwo will vanish ifA.‘,,AB,-..."ﬁ‘:s}tl'sfy the recursion formula

X
1 Ay = - AnSoVn 2 2.
" (Rem)(2m+ 2 -3) +1 “\*.
\./

The roots of the indicial equation, {(&x- 1)(?-“\& D, are & = 3,1, and for either wvalue
N
the first term will vanish, Since, however, neltpsa*uf these values of m will cause the second
term to vanish, we take A, = 0. Using 1), it,&ollows that 44 = Ay = Ag = «vves = (0. Thus,

\
X3

-_ " 1 2 ’»,“ 1 "
Y - on (1 - x + — X - anssrraver)
(m+2)(2m+1) +1 Jr+2y(m+1) + 1) [(m+4)(28+5) +1)

N\
-— =
satisfies 2;2?" - "f\. 2+1)F = (m-1)(2m-Dox

and the right hand member w;ll be ¢ when m =5 or w = L.
oY 2 ) b
When m = & and Ao = ll\ﬂé have ys = ,/E(1-x/s+x/168—x/11083+--.........)

. 2 4 6
and when m = i, wn&jo =1, we have y» = #{(1-% /10 + x /360 = x /28080 + covrevrean),

The complete s}hltmn is then

Yy = Ay 4“33‘-2

. 2 U 6 veed.
AVE(I- 2276 + 2'/168 — /11088 + *+*) + Be(l~x /10 + x /360 — = /28080 + +++)

Since x =0 is the only finite singular point, the seriesconverge for all finite values of x.

2
2. Solve in series Jxy"+2y'+zy <=0

Substituting for y, y', and y" es in the problem above, Wwe have

+2
n+l m+3) (3n+8)Ag + Ao)x
B3 - 1ydox” " + (m+1)(3m+2).41x . (m+2)(3m+5>42x + L o
= 0.

+ veeere + [(min){(3m+30— —1)4n +An-,,]x PR

. i ursion formula
All terms after the third will vanish if Agides"t satisfy the rec

1 An nz 3.
= o —————— - =
An (+n)(3m+3n-1
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The Toots of the indicial equation m(3m-1)=0 are » = 0, 1/3. Since neither will cause the
second and third terms to vanish, we take 4 = A, = 0. Then, using the recursion formuh
Ay =Ag = Ay = voo =0 and Ay =Ag = Ag = +++ = 0. Thus the series

1 b
# 1 5 I o~ tieee)
Y = - ——— +
b ¥ Aox (1 {m+3)(3m+8) m+3)(m+BY(Im+B)(Im+1T)
] A=-]1
satisfies 3y + 27 vz y = m(3m=13Aox .
3 [
For m = 0, with Ay = 1, we obtain from 1) ¥ = 1 —x°/24 4 x /2448 ~ +----..
V3 5 5o
and for m = 1/3, with 45 = 1, we obtain Yz = 2 0 (lax’/30 4 x /3420 — -eaiandy,
The complete solution is '
/3 3 PP
¥ = Ayi+ Bys = A(l—x5/24 + xb/2448 —aeean) + BT (1l - x7/30 ¢ x ,sJ-1.{I!\~ ceeea ),
"\
The series converge for all finite values of x. P N\
O
ROOTS OF INDICIAL EQUATION EQUAL. '\'\N""'
i ~..x\"
8. Solve in series xy"+y’'-y = 0, 4

\/
Bubstituting for y, ¥', and y" as in Problems 1 and 2. é.}ve, we obtain
\ \
Rox™ 4 e )4y - A)e" ¢ [(m+2)? Ao SR

.

+ rrasesa } [(m+n) Aﬂ 4?1-—1] Ain-l L T | R

»
N
\

All terms except the first will vanishkf Ay,Ag,eeer satisty the recursion formula
'\

K+l

1 Ay Qo An 2
(I \—— Ay, n 21,
' \ \(m+n)2
Thus, » .
Y o= Aox™(L + 1\-@;+ 21 p L 1 J
w B menimen (m+ 1 @ 2 (n e 3)°
satisfies \‘w’
O
2) ~.'; 'y ~F = monxmﬂl.

The roots of}the indicial equation are g < 0,0. Hence

; ; » there corresponds but one series so-
lution satisfyifg 2) with m - 0. However,

regarding ¥ as a function of the Independent variables

x and m,
a——yi = a ay = ..’a_a__y) = ay !
am Bm Bx Oz dm (3
at D223, L 33 22F | .

M 3 3 omiae dx 2 Bm P

and we have by differer_ltiating 2) partially with respect to m,

ay . Y
3 oy Yy -1 -
Wil - h - 2mAox” " 4 aPAx™ Y 1nx.
p \ .- _ — -
rom 2y and 3) it follows that ¥y = y!m=° and vy, = g{ are solutions of the given dif-
Ml a=0 .

ferential equation. Taking Ay = 1, we find
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2 2
‘om {m+1) {(m+1) (m+2)2 (m+1)2(m+2}2(m+3)2
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I
"
=
=
-

=
—
+
[
»

b — 2 4 1 x5

+ ..........]

+ xm[_ 2 3 X - ( 32 > : 2 )xz _ ( 2
e @ e 1) w2y @ +1) (n+2)% (n+ 3

+ P 2 + 2
(m+1) (m+2)5 (m +3)2 (m+1)2 (m+2)2 (m+3)5

3 - |

1 1 t ’

x + + }x
(ﬂ1+1)3 (m+1)5 (m+2)2 (m+1)2(m+2}5

.

= ¥Ilnx - %" [

1 1 L .
+( 3 2 2+ r 3 2+ 2 2.’5)x+.--o].
(m+1) (m+2) (m+3) (m+1)y (m+2) (m+3) m+1) (m+2) (m\k})
z 3 (::..x

2 + P TR EYY T RN €Y

(2 (3 ~\
AN

1. 1.5

{1+ E)xz. -k”.:,\_f;.i_(l + =+ g)x

Then y, = y|m=0 = 1 + x 4

yylnx - 2[x ¢+ 'lé

=0 (21) ENNNETD

K

NS
(D 1

¥y = Ayy + By, = @+Blumll + x + l’a e Ld ]

@ on

o
am

PO

and the complete solution is

RN 1
- 2B[x + .1 ~¢1 +-1-):c2 v 4 (1+ l+—)x5 F oeernanns ],
e N2 (3!}2 3

Nt

¢ &\
The series converge for all gi’n?te values of x # 0. ’

L >

£

\&
a v " 2
Solve in series xyﬂ’s};}’i- xy =0

No

Substituting‘;;fb} v, y', and y”, we obtain

o\ M nt2
v, 2. =
KEMl + (me1) Agx

" (.m+2)2A2xm+l + [(m+3)2A3+A0}x 4 samrrasevssnsnen

m+n-1

+ [ An + Apoglr b oasareresneas

= = =, and the re-
The two roots of the indicial equation are equal. We ti‘ke Ao =1 A =4, =0
= = An-g+

maining A’s satisfying the recursion formula #n (mem)?

= 0.

= .— = s =O.
Then A1 =A4 =AT = aee = {, AQ—Aﬁ_AS

y = m( 1 x5 i ___.1_.———;!6 - 5 1 2 2 x9 + --.......)
oot m+ 3 (s (46 (m+3 (46 (WD)
and, following the procedure of Problem 3 above, 6
1
y 1 x0 o+
3)’ _ —_ mn 1 b1 _( + - 5
5, % Ylnx o+ 2 [(m+3}3 x (m+3)5(m+6)2 3 (m )
1 1 + > 1 5 5);\19--....].
4 —— 2 o
(( +3y (m+5)"’(m+9)2 (m+3)2(m+s)5(m+9) (r+3) (m+6) (m+9)
n
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Using the root @ = 0 of the indicial equation,

1 3 1 b 1 L
- = 1 - ==X + x - 2 *
It J(Iix=l2l 32 3'*(21 )2 36(3!)
- 1 i
¥ 1 3 ] a4 s L v DL o
and = % = y,Inz + 2[= % - ( = rav]
Yz 3o |me=c J1 35 35(2”2 2 37(3! )2 2
The complete solution is
1 3 1 6 i S ]
¥ =Ay1+B}'2 = (A+Blnx)[1——x t x - b 2x TR
32 2* (a1’ 3% (ar)
1 1 1
vaBlLa - Lo bt e a1 AN - e,
3’ 3’ (2 3'(any A
The series converge for all finite values of x # 0, \ WV
N
L
ROCTS OF INDICIAL EQUATION DIFFERING BY AN INTEGER. O\
A
Solve in series xy"-3y'+xy = 0. \.\' ¢
\ }
\
Bubstituting for y, y', and y" we obtain A {

S

LRSS

(M-0mdox™ " & (m-3) (4 DA" AR -2) (m+ DAhs + Aole™ ™ ¢ eeeeenns
+ {(n+n:(ﬂ\n+n),4ﬂ+ A-n-g]x'm'l 4 eeeerens = Q.

¢ & \.0.’

_ The roots of the indicial equation are m = 0,4, and we have the second special case men-
tioned above since the differenceé of the two roots is an integer. We take A4, = 0 and choose
the remaining A’s to satisf.,y‘ ‘the recursion formula

7\ 1
i"\:zﬁﬂ = _
IE is clear z:at”\tfhjiﬁ relation yields finite values when m - 4, the larger of the roots, but
wWhen m = 0, Ap 8. Since the root m = 0 gives difficult = Bon
K ., we replace A by Bo(n - 0)
and note thit, the series ! ’ ’ o

-2 z 2.
(n+n-4)(m+n)4n z "

F o= Aox [1- —..._..1____‘,2 + 1 & 1 <
(% ~2)(m +2) B{R~2) (8 + 2) (M + 4) R(R—2)(m+ 2y (m+4)(m+6)
+ 1 L ]

AR ~2) (n+ )2 (R +4) (n+6)(n+8) :

= Bﬂxw [m - _(_____NL____ 12 + 1 x“ - 1 xa
R~2)(m+2) (u-2)(m+2)(n+4) (m—2)(m+2)2(m+4)(m+6)
1
¥ P cersirsaaaiey ]

@=-2(n+2" (1 +4)% (n + 6) (m + 8
satisfies the equation
i - - -
¥ -3y +xy = (m—4)onx' v, (m -4)m280x'-1-

Since the righ :
* right hand member contains the factar m2’ 1t follews by the argument made in Problen 3
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that ¥ and Y, withm <o,

213

3m are solutions of the given differential equation. We find
3y = n m2+4 )
- = ¥ Inx + Box [1 + —~-—-—--—_x2 - i r_l + 1 + 1 Yx
om [{J*l't—2)(m+2)]2 (B-D(m+D(m+d) m=2 m+2 =m+4d
+ 1 .2 11 e
{m— 2)(m+2) (m+d)(m+g) M—2 m+2 m+4 n+6
1 1
- '—"——+—2-—+L+_1..+ I)xa-{-.....]‘
(m=2) (m+2)? (m+4) m+6)(n+8) ®~2 m+2 m+d m+6 m+8
Using the root m = 0, with By = 1, we obtain
_ 1 X
Y. = y[m:ﬂ = = x4 + 21 xb - > 12 xﬁ + '““““,'\\
2:2.4 2.9 4.8 . 2T 4 B8 &
and O
¥ = oy = y,lnx+1+—1212+ 1 - ! \-1-+—)x
Bm|a=0 7! o 2 2 a1 1,\ 3
1 111 1 1 1 1.1 14 10
+ {(1+-+—+-—)+-}x ﬁv—[(u — 4+t —)+(— +2)]xT + e
o a1 21 2'3 ¢ 2 W 2'3 ¢ 5 3
\\‘
O
The complete solution is A
Yy = Ay: + By, ,’f't:“
R
- A Blm{- =2t r e e )
23 21 2! 27 41 21
\\ 1 1 1.1.1 1,8
. 1 [
+ B{1 + i:ac2 + -—1~—:c - —--1—(1+ +=)x B——-[(1+2+ +;)+§}x
2? 29 2 3 11 2 4120
,\

[(1+1+1+l+;)+{ +—)] + ]
2§51 31 3 4
Tte seriea~¢onverge for all finite values of % £ 0.
\’"‘\‘ w4 .
4
Bolve in series (x-xz)y"-Sy’ +2y = 0.

Substituting for y, y', and y”, we obtain

(m-dymdox™ + [(5—3)(n+ DAy- (=D B+ Dol

LEL T

1
L [(m—2)(m+2)A2-(u—l)(n+2)A,]x'+

b oeenrneee 4 [(,H,n_4)(-m+n)ﬁn'f(“+"“3)(”+nm”'1]x 4 eevanans = 0,
min-3 so that
The recursion formula is An = =77y An-1
1 v  m+2 5 Bt3 .0 4 it ]
- _ m-1 2 mo 3 BALY L2 4 ——2a
AR TR E - LA R POMEE
- -

satisfies the differential equatiol a1

= (m-wdox -

-2Dy" - 37+ 2F
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by an Integer. However, when m= 0 tpe oy.
= he indicial equation differ \

o 1-Mtshﬂf ?31’41;:: zenominator in the coefficient of x% does not occur since the_factor 2
o v?ﬁltsmilsggnumerator and denominator and thus cancels out., Note thut the coefficient of
appears

x} is zero when m = 0.

Thus, with 4 = 1,

L} [ T..
1+ 26/3+2°/340-2/3-20/3-3x/3-4x'/3 - evunna,

1 =¥

d
N Yo = ¥ s darzmratrad s

so that y, = (1+ /3 + x2/3) - yo/3.

2 . \
The complete solution i5 ¥ Cava + Coya = Co(l + 25/3 + 27/B) +'(\(\"\ ~ L/ ye

It

2 3 A
A(12+23+3) +qu(1+2x+3x + 4x \m“.'.:....)
O
x S\
' .4{x2+21:+3)+B . N

(1-2)° *\\\

There are finite singular points at x=0 and x =1, The serles converge for x| <1,

o

"k
W

-
.

O
Bolve in series xy"+(x-1)y'-y = g. ANV

N/
LY

Substituting for y, y’, and y*, we obtain o\

NS

- L2
LN
R N

(m-2)mApx” T + [ -1y (m+ DAL+ (- DATE" + [m(m+ 2045+ mA, 12" ¢ wonenen
A

T YR E S

The roots of the indicial .gq:ua.tion are m =

0,2 which differ by en integer. We choose the
A's to satisfy the recursisn‘formia

e \ud
Vs L MtA-2 S | )
,\\ﬂ}’El (mtn-2(m+ny = ° R+n An-s

At this poinj:.ivé" see that no A4;
due, of coursej B0 the fact that t

) 2

"4

~® for m = 0, the smaller root, as in Problem 5. This is
he factor m+n-2 cancels out, Thus, since

¥ o= 41 --—l-x o1 2 _ 1 %
mt+l (m+1)(m+2) (m+13(m+2)(n +3)

4 aaanenn ]

satisfies - - R
T x-DF - F = (mezpmag™t

we obtain, with As=1 and g-= G, m=2 respectively,

¥ = y|m=0 = ) +xz/2[ —13/31 + srearasiaas = e-x
and

Y2

]
it

2 -
T 2/8 4 24 S 28 4 i = e Fax D).
The complete solution is

Y = G h g2 % s o -] = 4%+ B(1-x), convergent
for all finite values of x,
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PARTICULAR INTEGRAL.

& Solve (xz—x)y” + 8y -2 = x4+ 340 near x = .
Substituting for y, ¥/, and y" as in Problem 6, we obtain the condition
D omd-mAer™ T+ [(m+1)(3 WAy + (R -DAJET 4 ererenenn,
+ [(m+ny(d -m—n)dy + (men)(man -BDAn 2™ 4 ceiiiiiene = x4 3/%°.

To find the complementary function, we set the left member of 1) eqgual to zero and proceed
as before,

The recursion formula is A4, = *4n.=3 An-y, @nd thus "
K+n -4 \\
Fo= Aox™1 o+ M2, .2l w5 Ly T
m-3 3 m- mn-3 . N
satisfies ) \“
2 . _ _ e
2) (K =x) 35 -9 - m(4-m)AQx7'x\1.

The right hand member of 2) will be 0 when m = 0, 4. ‘Egr m = 0 with 4; = 1, we have

¥1 = 1+ 2:/3+x/3-—x/3 5/3 ‘sx°/3 4;/3-...............

and for m = 4 with 4 = 1, we have ol ¢

¥o = xq'(l + 2 + 3x2 + 4;;5 + Sxt.yi. aresnaresacenen),

Ther v, = (1 + 2¢/3 + x /3) - yQ/\\and (See Problem 6) the complementary function is

\-\A(x + 2 +3) + B« /(l-x) .

In finding a partmular inj;t'agral we congider each of the terms of the right member of the
given differential equa.tmh sepatately. Setting the right member of 2) equal to x, that is,
- ‘\“ m(4-m}on Lan g x, identically,
. _na=1 . -
we have m = 2 and@ ﬁ For m = 2, the recursion formuls is An = — Ap_s; thus, 4; = 4,

=Az = eenpa —"\) The particular integral corresponding to the term x is #%/4.

Again, Xttlns the right member of 2) equal to 3/2%, that is,
u(4-—n)on L 3/x , identically,

n-4 . =34 A -1 , A5 =
we have m = -1 and AO = _3/5' For m = -1, ATI = — Aﬂ-1 1 thus, Ai 4A0: 2 2A0 -]

2
to the term 3/x" is
:11.,40, Ay = Ag = Ag = «»+e+ = 0, The partioular integral corresponding /

- E:\:-l(l + 3 x + 1 xz + 1 x’). The required complete solution is
5 4 2. 4
Bx“ 3 s _ ix + —sz
= ANt —7 "5 " x» wW. 1

¥ { (l-x} Bz

Bx' 1 2 _ 3,

2 +oa - =

+21+3) + —— 5
£z a-z° ¢

¢ the work is obtained by showing that the particular integral y =

Note, A heck o
partial c quation.

x%/4 — 3/5% satisfies the differsntial e
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since x = 1 is the only other finite singular point, the serles converge in the annular ye.
gion bounded by & circle of erbitrarily small redius and & circle of radius one, both centereq
at x = 0.

' EXPANSION FOR LARGE VALUES OF x.
9, Solve 2.1:2(1. -1y" 4 2(Bx+ 1)y’ - 2y =0 in serles convergent near x = © ,

The substitation

x=}-. f_d_y.d_z__-l_idlz-;"'Q. y":lgz+—1-i%=z‘d—:+2;3§1
2 dz dx L2 dz dz < a4 x dz dz dz
transforms the given equation into '\\\
2 A
2(z_z2)fi-—§ + (1-5z)? - =0 '
dz z O
for which z = 0, the transform of x = o, 1s a regular sinsulagopfaifrt. We next assume the se-
ries solution \‘
Yy = Aozﬁ+Alza+l+Agzﬂ*2+ XTEIERE +Aﬂ~z:-.ﬂ+ teasaans
and obtain the condition D
\®
\

(2R -1Aoz™ 4 {1y (I )y - (2074 Im+ DAPI 4 cecnirininns

o

AN i
* {(m+n)(m+m-1)4ﬂ;'-:,‘[2(-+ n)2 —(m+n)+ 1]4,,,,};"' Y =

2 ~’~‘0§
The recursion formula is Ay = Anin)pg (Rim) 41 An-i.

(n 383028 + 2 = 1)
¢ \.J

and thus the series

%

2 2
Fooodt e 2Ol iome2 2T 7 2

N / +* - s m oA .UI)
(= D2+ 1) (W+1)(2+1) (m+2)(2m+3)
satisfies R, \“
@) dzg_f a7
’%ﬁ(z*zz)—— + {1=-5z a2 27 = _ -1
QQ'.:;\ dzz )d'z ¥ I(ZI 1)Aol .
o>

F O NWt - '
or m Q. With Ao = 1, We have  yy = 1+ 22 4 T22/3 4 112:7/45 4 cvenenes

14+ 2, 7, 112
* 3-12 45:5

4+ sdwmr A EEars

and for m = -
m =3, With 4o ~ 1, we have Y2 = 15(1 +42/3 + 22:2/15 + 48427 /315 + errevver)

iy .4, 22 a8
3x

+ __5 + c---llt‘)o
12 31547
The complete solution ig
Y = Ay, + B =AI+_2. ..Z_ __112 =
1+ By, ( x+32+ FHoe) o+ Bx£(1+.i+ 22, 8%, .,
X 45

15x° 3152

The Series ln Z conver, z cle ()f Iadlus
ge for i
] ) : l | < 1. that 13. for all F4 1nﬂjde a cir 1 '

radius 1, centered at x = ¢, ree for |z{>1, thet is, for all x outside s circle of
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3
10. Solve x y” +x{l-x)y’ + ¥ =0 in series convergent near x < .

Making the substitution =x = 1/z as i Problem 9, we obtain

2
dy d
1) zZ —= 3 {3~ _y_ -
ds® ( Z)dz. Y 0

for which z = 0 is a regular singular point, We next assume the series solution

_ " m+l B42 '
¥ = Agz + Agz + A,z + reenasne +Aﬂz'+n+ tesrraaa

substitute in 1), and obtain

min +2)Aozm_1 + [+ m+DAg ~ (r=DAg]2" + [(n+2}(m+4}A2_mA1]z'+l< Cresaseraaes

N\
+ [(m+n)(m+n+2)A“ - (m+n-2)Aﬂ‘ 1]zﬁ+ﬂ-l + sssserrennes =, \

The roots of the indicial equation are m = 0,-2 and differ by a.n‘:.nteger. From the recur-

N

sion formula Ay = —--E:—’-l—':—z—-———An-g it is seen that A, -.,uoﬁ\}hen R = -2, We replace 4,
{R+ni(m+n+2) @

W

by Bo(m+2) and note that the series

\/
7 = Bor"[(m+2) + (m-DLyp+2) . (n I)n 2. 2("'—'1)10! g
(m+1){m+3) (n+1_):{‘qt3)(m+4) (x+3)% (m+4)(m+5)
+ (m_l)m(m+2) '.:;:&éli- + -ao-o.-..cnc]

2 2 <N
(m+3) (m+d) (m+ 5}:{%{- 6}
satisfies the equation

27 -
__J' t(} ;)_er = Bon(m+2)zz .

B\
Hence, ) ..: )
- 1
¥ . e\ Im+ 1 (n - 1}("“‘2)( 1 PRI ) P
e C Yz Bo{\“%{*"' [(m+1}(ﬂ+3) (m+1)(m+3) m¥l m+3
£ 9@ 1 m-1n (_£_+_1_'+ _1.._)]32 +
(m*\‘ll(m+3)(m+4) T e mrl w3 mtd
\}" om -1 _ (r-1)m (_E_+—1;+;-i-g)h’ +
(m+3)2(m+4)(m+5) (m+3}2(m+4)(iﬁ+5) m+3 ®m+
’  m- 1)m(n+2) 2,2t 1yt
S+ 2m—2 - ( +m+4+p+5 u+6)]z

3
it ey atE) (@D () (mEBE =

4 sererasrerss } also satisfies this equation.

Using m = —2 with Bo = 1, we find

- 2, 3, . 1. d
3’:=?|m_2=z2(-3z+z)—; 3. &
- . 3 M cvnae
Yo & = ¥ lnz + z-e(l+3z+4zz—112 /8+z/8+ )
— = i
om|m= -2 . a4 - 1135+ 1/812 4 ssssssrers, The complete solution
n-- i 2

Y1

..llo.!‘)
i - B +3z+4-11/3x+1/sx+
Is y = Ay, + By, = (A+Bln;)(1/x 3 + BG

The series converge for all values of # 0.
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SUPPLEMENTARY PROBLEMS
Solve in series near x=0.

1, 267 +%)y" = (x ~3hyy vy = 0.
R-Fc Aﬂ, = -Aﬂ"l

Ans, y = {A/Z +Bz)(1-x+x2 -15 + esansd, Converges for |1|<1.

12, axy" + 2(1-x)y' =¥y =0,

1
JFo Ay = An-
R-F " 2{r +n}) ne
\\
X xz x5 B\/- 2 x Jl‘.'5
Ans. y = A(l+ — + + oerae) 4 (1+—+s--—» +oaean),
911 22.2! 25-3l 1-3" ‘1 3.5  1-3-5-17
Converges for all finite values of x, 0 3
‘..:\"
2 v
13. 2y - xy’ + (1~2)y = AN
R.F. Ay = 1 An_g ., N e(e{i';.\\zn = 0, n odd,
(r+n-1){2m+2n -1} O s\
x! L o ‘\h
Ans, ¥y = Ax{(1 + — + +  osrsasensssansan)
2+5  2¢4.5-9 2=4~G 5+8+13
AN\ 6

x2 {\Vy
+BRL ¢ ey :
{_\5 20403+7  204:6:3- 7 11
Converges for p,ll:,,finite values of x,
N\
AN
14, xy" + y' + xy = O\i"\.{'

T

No/

R.F. An ‘:}

Ap.g, noeven; Ap = 0, n odd,
"\.“ (m +ny

N\
\ z [} 6
Ans, (A+Blnx)(1~-_2+ X $orenreneres)
2 2h4? 2l i ¢l
2 4 ]
x
+ B[_E— :2(14.%)4. x (1+_1.+..1.)_......----]-
2° 2%y 2%.4%.2 2 3

Converges for all finite vielues of x # Q.

2.0 _ 2
15. x%y 1!+ (x 1)y = 0. RF, A, = - 1 Ap—y . n even; Ay =0, n odd.
(n+n-1)2
A x2 4 &
ns. =W+ Blxx -+ E X )
2' 2y’ 2“(3:)2
5 2 o
+ x[--—-———-<1+-> "r-— 11
0 l+m 4~ LR NI I
2 ot (2!) ) (3[) ( 2+3) ¥ J

Converges for 211 finite valnes of x # ¢
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16. =" -ty =0 RP, Ape-—u !
(m+n=3)(m+n)

3 L 5.
Ans. - _ % x x7 2 3 4 5
ns, ¥ (A +BIlnx)¢( 1—2+;§_-;-§6+..,)+B(1+’_‘+x_+x__19x +137x e
2 4 36 576 28800
Converges for all finite values of x £ 0.
17. xy" + 2y' +xy = 0. BF, Apgs- o1 . .
Hn Gim@miniD Ap—p, n even, Ap = 0, n odd,
_ 2 1 2 4
Ans. hi = Ax l(l—x—‘i‘x—"'.oa-cc) +B(1.—x—+x——-o.o|-)
2! 4 ' T 31 sl )
Converges for all finite values of x # 0.
2 &
18, x(x+Dy" +x@x+Ly' -y =0 \
Singular points: x = 0,-1. RF. Ap == min-1 .A,,-l . "\
a+n+l

A\
Ans. y = Ax(l -x/3 + xz/'s - x5{1{) Foamreseer) ¥ B;""{ﬂ + x)
. N\ }
Converges in the annular region bounded by a ¢ircle of arbitrarily small radius
and a cirele of radius ome, both centeregsétxx = 0.
&

\§:\;\ )
19. 2y"+y' -y =z +1L R.F.  Ap o An_y

’.‘:.’3; *(m R} {(2m +2n —1)

Ans, y = A(l+x+ /6 + 2 /e0+ weese) + BYA(L+ /34 2730 + 23/630 + eoereet)
A _
+ ljrz(1 + {/l,\o\wL K2/420 + £3/18900 + +eeeree) = L.
6 ¢ '\

Converges for @il finite values of x.

PN
O
N/

. . A
Solve in series nesE™ = .

N

O )
3 2 ey _ .- Ao
20, 2’y" 4 xy\!j*y = 0. R.F. An -—_—-—_'———(u+n}(2u+2n D s
O ) L
1
Ans: ¥ =A(1—l+_.l-—_.1—-—+......) +B\/x_(1—;+—;-_..;+......}.
3% a0 6305 g2 90x
Converges for all finite values of x £ 0.
1
21. x’y" & (12 +x)yr -y= 0. R.F. Ap = ;.:n.. Apes

E]

1 1
_’;.+__]_'_+_£—+--0) +B[;

1 1 1 1.1
1 b (l42) + —(liz+2) e s
Ans, y = (4 + Blﬂ;}(l‘* PR &‘5 2 2 ax’ 2 3

Converges for a1l finite values of. z £ 0.



CHAPTER 27

The Legendre, Bessel, and Gauss Equations

THE THREE DIFFERENTIAL EQUATIONS to be considered here are solved by the methods
' of the preceding chapter. The first two have important applicutions in math-
ematical physics, The solutions of all three have many interesting properties,

THE LEGENDRE EQUATION

(1-xD)y"-2xy' +plp+ 1}y = 0

~

\

A solution of this equation in series convergent near x ={, an urdlnuu puint, was ecalled
for in Problem 16, Chapter 25, Under certain conditions on p which Mll Br stuted later, we
shall obtain here the sclutiom convergent near x - m. Using the ‘mlmtnutmu x = l/z (see
Chapter the equation becomes CN

Y 26} Q ‘x’\\

2 \
@-NLL 23 H s ey
d22 dz \¥;
K1 3
for which z=0 is a regular singular point, ‘\\' v
Putting ¥ = dgz” + Atz'ﬂ' + A,z“z MIEEETAY ¥ “An T e, we have
v N

{~m(n-1) + p(p+1)}Aez" + {-m{m+1) +,j§'cp + 1)};4“:"+ # {[=tme D(m 2y v pip+ D)4,

. M(m+1)A0}z’"2 + oarear 4 {{—{l;\+n)(m+n-l)+p(p +1)]A.n v o(mt n—2)(m-n—1)Aﬂ_2}zMn
¢ '\’\,.‘

We take 4, = 0 and A -Q’ @+n-N@m+n-1)
(m+n}(m+n-1)-p(p +1)

+ oerawr = 3,

Ap-o , and see that

= Aoz,[l + :w:ﬂ(ﬂ"'l) FLI mim+ 1Y(m+ 25(m+3) 2
EED@e -ppey [(R+1y(m+2)=p(p+ BI[(m+3)m+ &) —pp + 1]
.00\.‘0
+ \; mR+1)(R+2)(m+I)(m+a)(R+3) By eenne]
[( TDO D -p+ D] +3)(R+4) - plp + DI [(8+5) Kk + 6) = p(p + 1))
satisfies the equation
2.
«  2.d¥ 3 dy
(2 -2y Y v
dzZ & dz + P(P+1)J' = [“R(ﬂ-l)+p(p+l}}4°z- = (m+p)i-m +p-—'-l)AOZma

For m=_p with 4o =1, we obtain

Dy =P RE-D 2 pE-1E-2)(p-3) &

~1){p ~2) (p - -4)(p-5) b
2(@) _ PPN~ (p-3)(p - (P z

LICTTTI,

xpfl - %&E.:_‘I_'lxﬂ plp- 1)(P 2) (p - 3) P(P—l)(p —2) p-N(p -4 {p :5_lx-ﬁ

b o] 28 -D P -H oY

220
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For m = p+1 with Ag =1, we obtain .

L [+ (p+1)(p+2) 2, B2 (p+3(pte) w
2(2p +3) 2:4(2p +3){2p +5) :

11

2) Yo

D@D EADE PP HE) b

452 +3) (2 15) (2 + D PR

P 2ADEEY 2 AL EEEY -
2% +3) 24P 3P 5

, D EENEHEI5HprE -
2:4-6(2p +3)(FP +5)(2p + )

b oervrasaess]

/o

Thus, y = Ays+ Bys O

is the complete solution, convergent for i ] > 1, provided that p # 1{2, 3/2, 572, serrerre
or p £ ~3/2, =5/2, #eceeven, ” \

Suppose p is a positive integer including 0 and consider th&scﬂutlon yy which is a pely-
nomial, say uu(x). Putting p = 0,1,2,3,--++* in 1), we haQ

sanrddaewsmsrdvE Lo

ua{xy = 1, uy (%) = x, ugf{x) = x —1/3. ug(x) % R 3x/5,

5 il
PR PR TS ST B X5 St gty
® n=0 2" nl (2k-1}-------(2%§§1+1}

o 2

where [kk] denctes the greatest integer & %k (i.e., [5k) = 3 if k=T,

v‘.

[4£] = 4 if k =8).

~
N
3

The polynomials defined by O\ .
\\
v qeGasrs -1
3) Pyx) = (2p)! - u\(x) - ,1_3_1_1@._-1 uy (), P= 0, 1,2 «rver,
2 (e !
N/

are called Legendrp\po]ynomlals. The first few of these are:
PO {(x) = ug (-‘Q\ = 1,
Pi(x) = (x} = x,

N

Pg{x)\/ _2_1' !12(1) =

B3l g
[

1.3:5 535 3

Py(x) = 22 ug(x) 7 3F T 5%
. 1-3

1+3+5:7 5.7 ¢ - §__5. 2 )
PA(x) = _34._u (x) = .2.—.;I 22‘41 24

7.9 5 o573, 35,
Poley = 3‘3_:"_7_9“5"‘) = gg® Tt T e

. 3+5-7 2 1.3+5

s Rears 7'9'11 b - 5-7-8 x“ + 30— x - T— '
Peg(x) = E.a_s.l_l—luﬁ{x) = -2—'-4—.?" 3‘2_‘_4,5' 5.4¢ 8 2:4.6

1-3 13 9.11-13 7 _ 1 9-11 5 3_5..._7..2 xS - ?_'_5_'1:\‘:. ete.,
Po(xy = -'_'T'l;-—u,(x) = 516 x 3546 246 2-4+8

1ution of the Legendre equation

. ig a particular so
() 188D See Problems 1-6.

It is clear from 3) thal PP
(1-xByy" =2y’ + p(p+1) = O
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THE BESSEL EQUATION

xy"+xy' 4 (x2 = kYyy = 0.

It is evident that x =0 is a regular singular point. To obtain the solution in series,
convergent near x =0, we substitute

N4l +2

n+n
n arasnna + sssaeaa
¥ = Aot + Asx + Agx o + Anx

and gbtain

2 2 m+2
0" k0x™ ¢ {(m+ 1) kAT (e 2 oK) A1
+ .
#{lmem? =K 1Ay ¢ Ancah™ T 4 e
1 'O
We take A;=0 and A..ﬂ=---———2—a-t,,,.2 and see that "\
(m+n) -k N
O
- ” 1 2 1 A 2
¥ = Aoz {1 - x4 - n
° (m+2)? - & [<.+2)2_k’3[(.»§‘*_ k%)
; ’..‘\
- 1 e PP v}
[m+ 2 = #%) [(a+ )" - 12}Am + 87 - &7)
. . O\ -
satisfies the equation xzi" x5 4 (xz-kz}?. ::::)\(.2_ kz}on'.
For m = k with Ag =1, we obtain ",,'::"’
N\ 1 b
Y1 = xk{l- LI 2 1.\ S X0k eeeenner}
4k + 1y RS N ORS) o3 (k+1y(k+2)(k+ D)
<\
ard for m = -k with 4, =1, We’c%tain
Y2 :x-k{l_ 1 2 2~ 1 & 1 L R
4(1-k) x{\ 4 2001-k){2-k) 43-3!{1_k)(2—k)(3~k)

\

Note that y, = Y1 i%k“:(]. Y1 1s meaningless if & is a negative integer,
less if k is a pqg\l‘tive integer,
equation is "4y, + By,,

The BessX’I}

and y, is meaning-

Bxcept for these cases, the complete solution of the Bessel
convergent for all x # g,

functions of the first kind are defined by

Jk(x) k.1 1

= _ X x 2 1 T4 1 x b sesar}
Rl £ T (X B O L S o Ny - ) '
o 2 {k! 11(k+l)!(2) * Akt 2 31 (k + 3! 2
3
J_k(x) = (=1) Jk(x__)' where & is a positive integer including o,
Of these, Jy@xy) - 1 — _1 *y2 s L (’_‘)" _ 1 (f_)b b orresravans
ant gy @y’ 2
and Jixy = G 1oz Lo ae 1 x6
' ? - 156 ETA T v C T )

are more frequently used,

See Problems 7-10.
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THE GAUSS EQUATION

(x-x")y" + [y-(@+B+Dxly’ - afy = 0

To obtain the solution in series, convergent near x =0, substitute

" ®+1 m+2
Y = on + Aix + Agx 4 ianranre + Anxm+n 4+ snensaae

and obtain _
m(m+’}f—l)A0xm-1 F {@+DmeAy - [mm+a+ B+ aBio)s™ + cevererens

mtn-l

r {meny(mrnty—Diy - [(Ren-Dimtnra+tB-1)+aflins}x 4 srerrs =0,

(m+n —1)(m+n+a.+,8-1}+o.ﬁA
(m+ny(m+n+y-=1) met

We take An =

s &\
and see that \\

P
l’ 2

m(m+a+ﬁ)+a/3x mn+a+f)+aB (m+1)(m+a.+;.‘3‘+i)+aﬁ 2

Yy = onﬂ[l +

{m+ 1} (m+Y) (m+1)(m+7y) (Mz)Q'\”’HJ
m(m+a+ﬁ)+aﬁ (meymrarfrhral (Ju+§}(m+a.+,8+2)+a,8 5y eereeee]
(m+1){m+y) {R+2)(m+y+1) NG+ 3) (m+y + 2)

7\

satisfies the equation z SO ~ - anl
(=27 + [y~ @+ B¥Dx1F - aff = mm+y-Dhox

For m = 0, with Ag =1, we obtain o».’; 0

\

aB a(a+1),8(ﬁ-+1)\;é‘;_ ale+ D@+ 2BB+NG+D 3 ..

i af, car DA
Ya " 1y 1+ 2oy A 1- 2 3vyly + D (y +2)
A

and for m = 1-7%, ¥ # 1, !Vi:th\}lp =1, we obtain

) DBy D) 2
-7 11 -y B-Y+) | -yl yrnB-yiLE-YED

Y2 = x * D=y 122N G-
.{\\""(a—wma—w2)<a—'y+3)08—7+1)(ﬁ-7+2)fﬁ'?’+3’ PSR B
N\t 1:2:3(2-N (3 -N 4N
Thexgries ys, known as the hypergeometric series, 18 convergent for |x| <1 and is repre-
i

sented by Fla, B 7 %),

&7 Fla-r+l, B-y+l 2% x)
(including 0}, the general solution is

¥1

Note that ¥ =

is of the same type, Thus, if ¥ is non-integral

Ayy + By - AR By #y + Br ) Famytl Byl 2%, 2
y = 1 2 s PV

d . Some of these
There sre mumerous special cases: depending upon the values of &, B, and Y

will be treated in the Solved problems.
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SOLVED PROBLEMS

THE LEGENDRE EQUATION .
»

2" nl (p-n) (p - 20y

1. Verify that 2pp!P (xy = —d—(x -l)ﬁ (Rodrigues’ Formula)
? dt‘P
2 ] 5 n ! 22
By the binomial theorem, (x° -1 = 3, (-1)) —E " Ther
neg nl{p-n)l
d’ 2 i !
it i 2 -y — () (2p -2 -1)reeeens (-2 1y’
dx n=0 n!{P—n)!
i 2 (2p-1)+++ (p~2n+1) )
= D (et BB BB o g onedye s (pagney ETRLE2D)INT bz
n=0 2p(2p=1)«+ s (p-2n+1) # % ¢ UJ—:M)UJ*?”?P):.'*;l 0 (p—ny! )
Now (im the denominator) 2p(2p-1)++'(2p-2n+1) = 2 [p(p “1}ee(p-n +1\)I‘[( ;, L(2p—itye+ (Jp=2n+1)]
and when multiplied by (p-n)! yields 2 p![(?p—-l)(?p 3yreee (Zz{«)n + 1] lienee,
£, (£4) y
—(x - = 2 (..1} (2p)! p! \\z b~zn
li‘l:p n=0 2 1 *
: P2 - 1) (2 -3)- “(2P\2k+1)](p 20y n!
a“
(24]
- 2 (-1y* L p(p—l)’fi,-"(p-zinl) P
= 2 nlpt (B -1(FP-3)e (P -2+ 1)
LN\
N\
_ () AN
o Bp(x) = 2 '~P;\Rp‘{x)'
o
2 I’@]
+ Show that (x) = _ (%p - 2n)1 -2
" ~ 2 ( 1) \ xp 1”'- From Probiem 1 above,
2°n! (p-n)! (p - 2n)1
I \'[a»]
et - 2 1"
dxﬁ n'(p n)l(zp z")(ZP 2n - 1)0. o(p m+1)xp -2n
(4]
- 40
D Y TN R R
(p-=20)t ni(p-ny!
E7)
= ) —(-yip Pean
n=0a nH{p~n)! (p ~ 201 )
b (2]
Hence, P, (x) = 1 a” 2 4
# = o tix -1 = n -
2’ pr ! ,Eo =L 2 - 2 72,
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1
3, Evaluate fl B (x) Py(x) dx.

Using Rodrigues' formula (Problem 13,

fl P(x) Py(x) dx RN I
BiadR S R — f —(x -1 '—(x A
2 rlgt "1 dx dx
dr 2 r 'ds 2 5 Tl sl
Let u = —;(x -1y and dv = —=(x -1} dt. Then du = d (xz-l)rdx, v = (xz—l)s,
dx d’ _ dx -1

a.
x%
2
1]
(]
5]
£
=
1k
=
[~
| S |
®
ki
s
i
x;ﬂ
=
Lo
<
=9
1~

u
—_
1
—
o

-1 T+l
-1 d {dx
o~ o
£)

» .

d s=1 i 1ol s=1 N\

RS S PN R (A S -1 .
_dxsw-l £ s;&l

Now

ds‘.j 2 5 . A
(x -1 for j = 1,2, +¢,8°1; hence, aftpﬁ\}ne'integration by parts,
-1 . "

= G'
dx®7

1 1 r+l
f ! d "x —l}xo‘g\——(x —1) dx.

Poxy Py d&e = =
1 8 2ﬁsr!s! Y dx \\\dx

A second integration by parts yields N

o 3

1 +é s=2
3" d
-[1 P (xy P(x} dx = _[ (x -’ =

r'si

(x -1 dx

-] by p%s we have formally

>
> D

and, after s integration

"‘\'/ ( 1} 1 2 s df+5‘ 2 r
A) f P (x) P(x) (&‘d T;s_.T._I L (.I'.' --1) L ;?;;(x - 1) dx.
r! &

s\\ _er 2r=2 boaenree ¥ (_1)""
Suppose SK”:’:' Then, since {x -1) x - Tx .

; i mmetrically,
fo»(x) P (x) dx = 0. Sineer and s enter s¥

when r »s. Thus, it holds when” £ s

res .
(x =1) =
+5

this relation holds also

Suppose s = r. Then A) becowes '

1 r 1 P
-1 P2 o d Py ds
B [ PHwe - R e
(rty
1
d = ___._._._.—
Now dx”(xz_l)r = (). Hemee, j.:l P.(x) &1 oy
r4l 5
r 57 2ry! g i .2, using the
WAy [T et Ed s g T T
o

Zr(r! )2
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Jzﬂ
R+l
substitution x = cos & and Wallis’ Formula _L‘ sin 6doé =

I'3"'(2ﬂ+1) ‘

4. Express f(x) = £+ 2:|:5 +2xz—x—3 in terms of Legendre polynomials,

. 35 4 15 2 3 ¥ 8 6 3
Since P = = - =%+ I, then x = — P,(x} + —-x° - =
o (x) 5 x 3 25 4 {x} 7 3 and

4

8 ' 6 2 3 3 2 8 3
X = = P + = - =)+ 22X+ —x -3 = — + Oy
f(x) (35 o (%} 7 x 35) 35 af{x) t

3 8 4 20
= S Py(x) + gx and f(x) = é-gp.(z) + gPa(x) + T * + éx - 2=

"
i
Lol b
o
[~
—_
w
L
-+
| s
=9
-+
i
"
T
1

8 4 40
§§P4(x) + E Pa(xy + HJr'-’g(:uc) +

1
5 &
8 4 40 155D o
= 'é'gpa(x) + gpa(I) + 2—P,(x) + '5':%‘(1) - EQ_E;PO(I)‘

h. Show that (1-2xt+ tz)'é = Poxy + Py(x) ¢t + Py() 4 '»\

2.5 2.9~ 4
Now (1-2xt+t) 2 = [1-(2xt-t%) T \';(\Zﬂ . (1/2)2(3/2)(2”_t'z)z+ s

see (2R -5 |- P T - {\\
. ) tz) 2 . 1 :;_l {2k 3)(21: N 2}k 1 . 1030 (20 - 1) 2,k

k- 2)! 2" Ttk-nt (Y 2* b

NS
aX
N

2k 3
But (2xt - t%y = (zx)ktk con N

2 k-1
(22t -t = (2x)k"'l k'l,.\(g\ 1)(2,,)"‘”2 k Sreen,

(25t — tz)k—z - (2x)k-2 k- 2_ (k- 2)(2:}13 3 k-l . (k-2)(k- 3)(21 key R
2! ) )
N\
Hence, (1—2xt+t2} \ 1 + xt + (Ex‘"_ 1){" b osesaiian !
2 2 LN ) + [—u—_k._—-.-—-—
\;\\Q 27 k!
k r}2 -2 kw2 N {2-5) (k-2)(kh- -3 k-u k-y k
Yk -1t O k S Je& g nnennees

k- =~ 2)! 2t
\

*

_ L33y
k

= 1+ xt 3.2 1.2 28 e(Dh = k
x +( - P e , L3 (2k 1)[1

Rk —
J Rkl ke kk-Dk-2yk 3 A

2(2k -1 2-4(2&—1)(2!:—3) S
= Po(x) + Pigxyt + Py t2 +oerres. g Pk(x) tk s
A. § =
how that Pp(z)- P=0,1,2,8,¢v00v000. |
Put x =1 in the identity established in Problem 5. Then
(1-2t+¢2y2 . A-070 o g2 T o, 4

LIEE N S
= Polly + Pylyt + Py1ye2 4 ..

T ﬂ )
Hence, Po(l) = Py(ly = -.... PR e , identically.

p(l) S tsaay = 1.
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THE BESSEL EQUATION.

d
F. Prove Ejo(x) = - Jy(®.
Jo(x) = 2 0" — O
(Ri)
1 )
=1 @ G - e e
(21 3n [(n+1)[}
and
d x 1 x3 I x8 n+l i x 2n+l
L - _(Z P el 2 4 eeass - - =
& o™ U TETAC e e FEN e A
"\
x 1 x3 n 1 X 2n+l
= N — TEEE LR -] e o.n‘c
[2 112!(2) £ = -n!(n+1)l(2) ' ( ~ %
© . . O
n X In+l N\
= - -1y ——(= = = . (™S
EG( e P TTARY 1 N
K
Moere briefly, v/
d 2 d x zn,
2 oty - Ztn =& - 2 sty 7]
dx =0 (n!) \\:’?"1 (n!)
O
d &, n 1 x4 2m+2 % ")2”“‘1
= ;[1- E:O(-) m,z n=0 nl(n+1)l2
&
, 28\J .d -k _ -k
8. Prove @) %xk.Jk(x) - Ik"&:i(x}' b E x k(x) = -X qu.]_(x)n
where k& is a positive inte{é}"ﬁ'
'\sn”
d & _{i\ x2k+2ﬂ
£ 5 -1 —
D dx ¥y 2 ( ) k+2nn! (k+n)!
'"\\“ o " 9k + 20 xzki»zn-l
Q7 2 Fm e
n=0 2 n! ( +n) ]
® 1 2k +2n-1
= 2 -1 1 o
oo 272" ot (ke n - D!
" w n _-_—1_._— x. kezn=1  _ kak-l(x)'
= 20 b5 (k+n-11 2
n=
X g 2 . _ o
b -, = - e N o
) % J (%) = ﬂ§0 (-5} SHHI e k)l
. 1 x2ﬂ+2 ]
= 2 (1)
a'.x 2k " E 2k+2ﬂ+2 (n+1)! tk+n+l)!
: @ 1 X ktzntl
n il =
oSy s R N T vereyal
a=0 2k+2n+1n1(k+n+1)! n=

227

=Ji(x).

-k
—-X Jk-l-l(x)'
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d . 2
9. Prove @) J, (x) - J,, (@) = 2£Jk(x), by Jo_ (0 v (0 s =
where k is a positive integer.
From Problen 8, 4 .
k kw1
Ay %xk-.fk(x) = x % Jo(x) + kx Jpxy 7 oz Jyy(x) and
d —k -\-k d J k J _ - ]
B) Ex RUSEI IS o p{x) - Rx iz} = —x J L @),
Then from A), d b
1) E;Jk(x) + ;Jk(x) = Jk..l(x)i
ﬁ\
and from B}, 4 . ) \
2 Ejk(x) - "Jh(x) = —Jk+1(x)- "\(’.. )
O

When 1) and 2) are added, we have a); when 2) is subtracted t’rom\I)* we have by,

Note that when &) is subtracted from a), we have o)

v

d k
2 — J {(x) = % J px) = -2 Jku(’” or d\d WE = Z Jk(x) - mem'

\\
Note also that b) is a recursion formuls for Béasel functions,

LY
NG ¢
g

N

¥

Le{t=1/t &N
10. show that  FUTVEL L 0y PILEANE seree 4 £R 00y e ' %J-l(‘) e
~
.\ + 00
‘l: '_%.:):k(x) + srevanea = z tn Jn(x).
"\\’ fle -
e%x(t-lﬁ} - e{;xt e-x/z;.x:
¢\
O 2,2 3.3 n n z
= {1 f.\’xé +-x ! + ! 4+ rease 4 xt + LY - = t —x_-—
5 P 3 ] [l 2 2
NP e P 2" i a2
..\
) % cll
~O —- _5_..___5_ + aen + (=1) -~ " b eeean ]
) 273t 2 n!t

In this product, the terms free of t are

1 x.u 1
1_ & 1z %6
@ 5E - =B e L = o),
21y (31) (nn)
the coefficient of tk is
% kel
: - y + % . ka x2 xk+3 x5
+2 ’ - ' e
e S VL T L TR 2" (keay 20 3
1 x» 1 b+
= LBk (:5} z 1 x, kty 1 X, k+b ‘e
k! 2 Uk+ 1) 2 T A 31 (k+3) 2
o
_ 1y x koo 1,
E: " (k+n)! (2) = Jptny, and the coefficient of — 18

t
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k B+l )
k E+2
-1 [ kx - kﬂx Eoy - x , P :|:k+31 e . ]
2 . - .
27 R 2 (k + 1)1 et 2 oo 2k+3 (ke + 3)1 o3 o1
= (_1)33 [i (E)k - __.1__ % k+z + i . AL I 1 ;_g)kn, v aer]
Rt 2 M+ 2 ke 2 ki3 2
= D = .
THE GAUSS EQUATION.
) . 2, 3 1 .
11, Solve in series (x—x )¥" + G- wyy! - 7 =0
s &\
Here a+B8+1=2, ¥=23/2 af=14 thisa=5=-172 andy- 3/.2.\
2 3EN)
11 3 x 3x S\
The = F(a,B,7, = F{my =y = = 1 = —_ S+ reneres
en ¥y (a@.53,7 %) {2 5'3 x). + 5 + - +\412’+
1-¥ -% x'\\| !
and .yE = x F(a_'y+li ﬁ_’y'i'lt 2_’)’! x} = X Fjg%ﬂo!lx) = I//I_,
0
and the complete solution is ¥y = AF(E.E.E.x) + Bk .
2 2 2 \\,‘
“"x{“
\®)

19, Solve in series (z—x)y" + 4(1-2)y - 2, o

Hore a+B+1=4, y=4, af=2 dhen a=1,B=27=4 or a=2B8=1,7=4

«a3
N

For cither choice, ¥3 = F(li&4x) = F(2,1,4,x)
..\\ 2 4 5
€Y =« 3x x x I ..
sty T e = = e et
Wt T s 1 0 »

A

N i f a-y+2 or
Since 7y = 4, the fpum;h term in y, has zerc for denominator. However, one oI « Y 0

B-¥+2 in the third\serm is zero so thal
- - =
\2}{“1 20 F(=2,-1,-2,%) = ¥ SF(-1,-2,-2,%) = z {1-%)
and the ,;\mﬁéiéte solution is 1z
\ y = AF(1,2,4,x) + B ——;— *
4 x

- . = In{l+x).
13- Show that a) F(a'ﬁ'ﬁ’x) - (1_x) a’ b} zF(1, 1,2,-x}

O—(a+1)lB(ﬁ+1). x2 + AR R RN

af3
® Fefipn - 17 ;E'x Y T eBB
. . | 3
a@+l) 2 a@+ @+ 3 L e = (1-x) .
= 1 + ax *+ —-—-2—""" Y

1 1.2'1.2(—1}2 N 1‘2.3.1‘2'3(-4:)5 + .-.uc-]
by xF(1,1,2,-%) o a. 1+2:3:2:374

1)
"
~—
—
+
)
- -
B2 |
T
2l
'
-+

12 1%, .o = la{l+o.

1]
"
-
-

1
bl e
»
+
[ %)
'
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14,

15.

17

18.

19

20.

2L

22.

THE LEGENDRE, BESSEL, AND GAUSS EQUATIONS

SUPPLEMENTARY PROBLEMS

Compute a) P, (2} = 55.3750, ) Jo(1) = 0.7652, ¢} Jy(1) = 0.4401, o) F(L,1,10,-1)= 0,017,

Verify each of the following by using the series expansion of sz (x).
Q) (- DPj) = (pr D[Py () = 2P 0] = plxPyex) - Py (0],
b) Bj,,(x) = xPy (x) + (p+ 1Py (x).

¢) (2p+DPy(x) = By ) - Py = 2l(p+ 1Py, (1) + Py 0]

If Pa(2) = a and Py(2) = b, show that
T 7 1 P S
a} P;(2) = E(b—ﬁﬂ). b) P;{2) = 5(25-6). c) Po(2) = §(30b—7ﬂ). ) }‘.‘ (,a\; 5(.:2&— l4a}y,
N
If Jo(2) =a and J,(2) = b, show that @) Jo(2) = b—a, b) J1’(2) ":(E:.,.“l,‘ab, ) J;(g) = a,
Show that the change of independent variable =t reduces the hége}'a.drn equation to a Gauss
equation, ':f\\ '
a) Show thet the change of dependent variable y = x™2 transfgrms y"+y = 0 into a Bessel equa-
tion, w\/
- ,’.\ IK %
&) Write the solution of the Bessel equation as XS Ctx Jﬁ(x} + Cox™J h,z(x) antd show that
\ 3 =

- N\
J,é(x) and J_&(x) may be defined as ax I‘tzsinx ’aiu:f bx % cos x respectively,
¢) Show that if the relations of Problem 8 gi‘t»’:%o hold for k = + 4, thena = 4,
Note. These functions are defined with a'.;’:.v‘nz/n.
U ) 1/2 AN 2/3 .
se the substitution y = "2 an;l\tji‘en x = (3t/2)”° to show that y"+zxy = 0 is a special
case of the Bessel eguation, and{ml’ve.

Hint: z" & ¢z7 4 (:2-1/9)3:30,

5.\ 5 9
Ans. y = Ax[I - Co - - ud LEERRAAEEY!
\2 3 2027871 a1 22 3% q.y0
O 6 9
+ B[:L’;... Bl x - x toastreciiinan]
SO0 32 23t 3 33 gsg

Solve (x*-"8x+2)y" 4 gry! 4 9y =

0 after reduecin itutien
of the form g - £2 4 . g it to a Gauss equation by a substi

Hint: y = AF(1,2,4,2-1) + B(x— 1 F(6,7, 6, x-1)

is not a complet i ince the sixth
term of F(1,2,4,x-1) becomes infinite, plete solution sinc

Ans. ¥ = AF(1,2,8,2-x) +B(2_x)'7p(_s,_5’_ﬁ'2_x}

Express each of the following as gauss functions

1
a) =F1l -y

g 1, 8,8, x) d e* < lin Fa, 1. 1, x/a)
b) are sinx = xF(t, L, 3 .2 ame

x x (2 2 2-x) 5 2
e)sinx = lim 4 F S X .
¢) arc tan x = x F(i, .1., _3_’ __xz) amm (@, B, 2 aaf3 )
2 2 A+



CHAPTER 28

Partial Differential Equations

PARTIAL_DIF'F‘ERENTIAL EQUATIONS are those which contain cnhe or more partial deriv-
atives. They mus_t, th_erefore, involve at least two independent variables. The
order of a partial differential equation is that of the derivative of highest

order in the equation. For exampie, considering z as dependent variable and
x, y as independent variables,

oz 3z
X—= + y== = 2 ! =
1) % Yay or 1YY xptyg=z .
"\
is of order one and AN
2 2 ? .f'“..‘
n 22+ 32Z v ZTZog or 2 ressygie=0
ax * E
14 ¥ .*t\\
is of order two. In writing 1') and 2'), use hasiPeen made of the standard
<N .
. Oz 3z ¥z N 2z 3z
notation: = — =2, = -— Sy ' t = —.
a P 3% q 3)’ 3.\'2 X :\\“Bxay ay?
.\\:

Partial differential equations mayibﬁ‘ derived by the elimination of arl?;-
trary constants from a given relatinh between the variables and by thg elim-
ination of arbitrary functions ofgthe variables. They also may arise in con-
nection with geometrical and phgs'ical problens,

N\ . :
ELININATION OF ARBITRARY CONSIANES. Consider z to be a function of two independent
variables x and y defined by

3) <" g(xy,2,a,b) =0,
in which a apd~b-are two arbltral"y
with respec;{\ & x and y, we obtain

*

constants. By differentiating 3) partially

4) n\:"\.’." gg + E g'z' = E + p.a_g = 0

\ ) x %z W 223 oz
and :
3 , vsoz _ 2, g% -0,

—_—f — =
5) ay oz By aY 9z

tants may be eliminated from 3), 4), 5) yielding

itrary cons
In general, the arbitrary f order one

a partial differential equation o
6) f(x, v, Z, 0 Q) =0
2 2
= + b + ﬂbu
EXAMPLE 1. Eliminate the arbitrary constants a and b from z = ax ¥
x and y, we have
'g
oy

Differentiating pertially with respect €

?£=P=2ax and = g = 2by
‘ox

quations and substifuting jn the given relation, we obtain
m these € _

Solving for « and b fro

231



232 PARTIAL DIFFERENTIAL EQUATIONS

Z. =

L.z g 2 ! E L g or + 2px2y + 2qu2 = dxyz,
G5+ Y+ (GG pg
a partial differential equation of order one.

If z is a function of x and y defined by a relation involving but one ar-
Lbitrary constant, it is usually possible to cbtain two distinct partial dif-
ferential equations of order one by eliminating the constant,

EXAMPLE 2. Eliminate o from z = a{x +y¥).

Differentiation with respect to x gives p=a, so that the partial differentisl equation
z = p{x+y) is gbtained, Similarly, differentistion with respect to y gives g = a and the
equation z =g{x+ y}.

If the number of arbitrary constants to be eliminated exceeds, the number
of independent variables, the resulting partial differenti,al\ equation {or
equations) is usually of order higher than the first. RAY

EXAMPLE 3. Eliminate u,b,c from z = ox+ by +cxy. PN

Differentiating partially with respect to x and y, we hm@‘ \

(i} p=a+cy and (11N b+ cx.

These, together with the given relation, are not suffit)l\a'ht for the elimination of three
constants, Differentiating (i) partially with reil‘)egt"to x, we have

[ Bzz O

—p = — =\r’= 0,

Ox o o
R

& partial differential equation of ordertwo., Differentiating (ii) partially with respect

to y, we have ~N
» 2
g {\N"9
‘—.'9,\= 22 - ¢ - 0, of order two,
¢ {3& ayz
Differentisting (i) partia}ly with respect to y or (ii) with respect to x, we obtain
’\::Ep = a_q = azz = & =
~& Yy o ox Jy -

From (i), PQ:;Q\ sy and a = p-sy; from (i), b = q ~$x,
Suhstitl'lt,tn“g *for a,b,¢ in the given relation, we obtain

\ / 2 = (p-sylx + (g-sx)y + SXY = px + gy - sxy,
of order two,

Thus.. ‘we have three partial differential equations r-0, ¢= 0, z=px+gy—-sxy of the
same (minimum) order associated with the given relation,

See also Problems 1-4.

ELIMINATION OF ARBITRARY FUNCTIONS. Let uw =u(x i
\ . =u(x,y,z) and v= dent
functions of the variables x,¥,z, and le(zt ) @ v=vlxy, =) be indepen

D d(u,v) = 0

be an arbitrary relation between them. Re

and differentiating partia garding z as the dependent variable

11y with respect to x and y, we obtain

8) 9pedu | du W v B3
au(ax+Pa—z~) + :a%(3;+p_a.lzr) =0 and
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3(,15 B‘u ) . qu) av W

9) -
au 3}’ ‘az BV ay qg;} = 0.
N T A
Eliminating 30 and 30 from 8) and 9), we have

Bu du E)V v
+ p2d + p¥
x P35 a0 P

= (T tp =gy - (Z 4 g8 —
ou qE v, qa_v e "2z (By qaz) (3}' i qaz) (32: ' paz)
By dz Ay oz
- ?_1_1_32_3_1.’_3_3 gx_:yﬁg_gpz o 9y Ju v 0
9y o vz oy 3y oz ax 3a(\ 3z Ox ‘
Writing ap =203 _ 2w, Bdudv dwdv &5 dwdv  dwav
3y 3z 3z Yy __ _ dz Ix  Ix 3z R udl 9x dy oy ¥
this takes the form AR
Pp + Qg =R, A
a partial differential equation linear in pland’q and free of the arbitrary
function ¢(u, v). PNy

W

O\

\ 3 .
EXAMPLE 4. Find the differential equat¥o arising from $(z/z, y/x)= 0, where ¢ is
an arbitrary function of the erguments. ".‘;‘ o

We write the functionel re}ationqn \the form B(u,v) =0 with w=2/x’ and v=y/z. Dif-

ferentiating partially with respect} tu x and y, we have

w”—sz)\\é""’ ’)-0 a_@ e 24 -0

Ba 5 ‘9\'{ ) G
The elimination of %, ami éé yields
NS
%1
p/x? - 3z/x* /(..‘.' .
'\\T“ < pe - Bfa sy’ =0 or prtagy =B
a/x’ ~l=,\ /a :
o) Z = f(-’-’) or z = x"'f(’z). vhere

Th{ ’arb1trary functional relation mmy also be given by ;’ -

f is an arbitrary Function of its argument Using v = /‘x and differentiating z = x f(v}

with respect to x and y yields

s df X L Py - x c—-’fu- 5 - 22f(v) - =y '),

- 2 ar gr -
P 3xf(v)+xdﬁax
df v 3.df L o 2.
g = <3 df ov x(d_v)(x) : x fi(9)

dv oy

When f‘(v} is eliminated from these, We have

5 = 3z
z+ gy = & f(v)
f See also Problems 5-8.

s hefore,
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1.

2§

e

SOLVED PROBLEMS

2
Fliminate ¢ and & from z = (x%+ a) (y° + b},

2 _ 2
Differentiating partially with respect to x and y, p = 2Zx{y +) and g = 2y(x"+ a). Thep

2 ? = (yEy or = dxyz,
y2+b=%» x’*+a=2iy. and z = (x° +a){y +b) (2y”2x) pa

ary(y? + ) (a* v @) = dnye,

We could also eliminate ¢ and b as follows: pg

Find the differential equation of the family of spheres of radius 5 with centers an Lhe plape
e 2 2 2

The equation of the family of spheres is 1) (x-a) + (y-a) + (z-1) = 3}5,. a.amdb being
arbitrary constants, Differentiating partially with respect to x and y, arl}l\{ viding by 2, we

have (x-a) + (z=b)p =0 and  (y-a) + (z-b)g = QLD

Let z—b = -m; then x-c=pm and y-a=gm, Making these replagg!x{eﬁ'ﬁs in 1y, we get

AN
mz(p2+ q!+1) = 25, .’.“\
\ 2
- X 5¥) 2 -
Now x-¥y = {p-q)m. Then m=;—;- mz(p2+q2+l) - X (p2+q +1) = 25, and the

NP -9)
2 ) W o
required differential equation is (x-y) (p2 + q2 + lj(\sz 25(p-q)" .
£

N/
L 3

) ¢

Bhow that the partial differential equation olgtdiﬁéd by eliminating the arbitrary constants

a,c from z = ax + h{a)y + ¢, where h(s) is\an‘arbitrary function of a, is free of the vari-
ables x,y,z. "

'\ .
Differentiating z = ex+h(a)y+c "’bﬂ.!‘ti&]l)’ with respect to x and y, we obtain p - o and
g = h(a). The differential equatiéniresulting from the elimination of a is q = h(p) of f(p.q)

= 0, where f is an arbitrary fungt;on of itz arguments. This equation contains p and g but
none of the variables x,y,z._ />

AN/
S v ‘\“
Show that the partial d{f,fbrential equation obtained by eliminating the arbitrary constants a
and b from .Q\
s‘:" z=ax+by+f(a,b).

the extended ClafEBui equation, is

) 2

z

ir

px + gy + f(p.q).

Differentiating z = ax+ by + f(a,b)

Fith respect to x and y yields p-a and g = b
required differential equation follows

immediately,

and the

Find the differential equation arising from D lx+y+z, x2+y2_12) - o.

= _ .2
Let w=x+y+z, v =g +y2_22 8o that the given relation is diu,vy = 0.
Differentiation with reshect to x and ¥ yields

op op )
au.(1+p) + _au(zr..zzp) =0 and %f’(nq} + %(Zy_hq) = 0. Eliminating %f and %% we have

+p  2x-22p

2y-x) + 2(y+z) - %(z+x) = 0 or

l+q  2y-24 (y+2)p - (x+2)9 = x - y.
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b

Eliminate the arbitrary function ¢(x+y) from : =dlxty)

Let x+y=u 8o that the given relation is =z = Pu)

pifferentiating with respect t i
0x and y ylelds p = j%= ¢’y and g = '@,

Thus, p = ¢ 1is the resulting differential equation.

- . .
7. The equation of any cone with vertex at Py(%s,¥o.%) is of the form (=20, L2390y - g

8

Find the differential eguation, Z-zp %1-Zp

% ~Xo Y=Y

Let > - = u, Py, = v 30 that the given relation is ¢(u,v) = 0,
Differentiating with respect to x and y, we heve \\\
g%(z_lzg - x_xOZ) g g%s(-p&) =0 imf' .:‘
(z -2zp) {z-29) A\ "/
o S L SR O SO A L .
du (1_20)2 -2 (z —'de’

Eliminating g%’ and a_c,b’ we obtain p(x-xp) + q(y.—"y},’jF Z=2p.
v L &
._\‘\z

£
L 3

Eliminate the arbitrary functions f(x) and g(y)t"fffc;m z=yflx) +xgly).

Differentiating partially with respec,t','zu‘,{:f’x and y, we have
H p=yflix)+ 5@ and 2) g = flxy+ =g

Since it is not possible to e}:‘{miﬁate f.g.f's g" from these relations and the given one, we

find the second partial derivatives
3) @, s=flre’on T xg" (.

7.\ '
From 1) and 2) we £id f'(x) = é[p-gm] and g'(y) = é[q.—f(x)]- Hence,
N
R\ 1 1
LNt s = flim gl T ;[p—g(y)] + 2lg-fel

R

Thus, xys’ = z[p-g(N] + ylg-f®] = pr+ @ = [y fix) + xgn] = prtay=2
resulting partial differential equation, :

is the

Note that the differeatial equation is of order two although, 1n general, a higher order is
expected, However, since one of the relations 3) involves only the first derlvat:.wes of f and
g, it is possible to eliminate f, g, f' g’ between this relation, 1), 2), snd the given relation.

. 2 2 2.2 _
Find the differential equation of all surfaces cutting the family of cones x +y -az =10
orthogonally.

s. At a point P{z,y.z) on the surface,
Likewise, at P a set of
gipce these directions

ion of the reqﬁired surface
the normal to the surface is {p,q,;l].
the cone throush P is [z,7, = 2],

Let z = f(x,y) be the equat
8 set of direction numbers of
direction numbers of the normel to

are orthogonal, 2
prt gyt @ z =0.
The elimination of a? between this and the given equation yields the required differential

equation 2(px+ @V %4 y2 = 0.
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10. A surface which is the envelope of a ohe-parameter family of planes is called a developable
surface. (Such a surface can he deformed (developed) into & plane without stretching or tear-
ing.) Obtain the differential equation of developable surfaces.

Let z = f(x,y) be the eguation of a developable surface,
The tangent plane at a point {xg,Yo:Zo) of the surface has equation
- 1) F=(x-20)p + (y-Y0)3 - {z2-20) = 0.

Now when p and q satisfy a relation ¢(p,q) =0, 1) isa one-parameter family of planes
having z = f{x,y) as envelope. Thus ¢(p,q) = 0 or g = A(p) is the required differential

equation,
X . -
The cone of Problem ¢ is a developable surface since p = A —Z— satisfies ¢h(p,q)
a“z a“z
=dpfeghy -1 = 0. &
11. Eliminate the arbitrary functions ¢, and ¢, from O
z = Pylytmex) + Pylyemex) = ch(w) + ‘jbgg\l’.)“'
in which my # m, are fixed constants, v \
Differentiating partially, we obtain \\
2 2 2 (& 2 2
:mid—-f1+midf2s s =|1¢1_d——21 +’.}2\2de. i :df1+ df‘fg-
du dv du® 0 dv uu dv
Inz mz R
2 2 1 B OB
s d d
Eliminating ﬁ, _95.2 we have |m, . my® s| = (m ~m)r - (m";_mi)s + f’“ﬁ’“"»“‘ﬂ’“i” =0
dut  @? \
ANTL ot
¢. &\

or, since my # m,, © = {m+ mNS + mom,t =0,

N\

12. show that (a) z = ax3+,§:y}“ and (b) z = axd+ b12y+cxy2+dy"/x give rise to the same dif-
ferential equation, \ J
O\

a) Bifferentiat@ugff} = dx’ + by5 partially with respect to x and y, we have

NN

\ ) ' p = 3ax’ and g = Sbyz.
Thus, px+qy = 3(ax’+ by’) = 3z is the resulting differential equation,

b) Differentiating z = ax> + bx2y+cxy2+dy“/x partially with respect to x and y, we have
2
p = 3ax* + 2bxy + cy? - dy*/x* and q = bx? + 2exy + 4dy5/x-
Thus, px+gy = 3(a,x§+bx2y+cxy2+dy“/x) =3z a5 before,

) The fact that these two equat jons, one with two arbitrary constants and the other with four,
be rlse to the same differential equition will indicate the subordimate role which the oI~
awy constant will play here. In its place we will have arbitrary functions. Since (a) &Y

be written ag
- 3
z = ax’ + by3 = xj[a+b(y/x)5] = xs-g(y/x}.
while (b) may be written as
z = x5[a+b(y/x)+C(y/x)2+d(y/x)"1 = 2 h(y/x),

each i
5 & particular case of z = xj-f(y/x) considered in Example 4,
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SUPPLEMENTARY PROBLEMS

gliminate the arbitrary constants a,b,c from each of the following equations,

2 2
13. z = (x—-a) + (y-b} Ans, 4z = p2 + q2
4. z = axy + b xp = ¥g = 0
15. ax + by v ez =1 r=0, $=0, or t=0
16‘ I = (lxe}I + %ﬂ‘zezy + b q = xp + pz
1. 2= axy+y/aloal +b pg = xp + ¥q ~
2,2 2,2 2,2 2 2 AN\ _
18. x7/a” v+ ¥y /b0 v 27/ =1 xzr+xp = 2p =0, yzt+yq — 240, or zs+pg=0
< M"X
. O
Eliminate the arbtirary censtants e,b and the arbitrary functions’;q\{f}\g’.
19, :z = xzr,f)(x-y) or l,b(zfxz-. x-yy=0 Ans, 2z = xp.eqifr} '
20. xyz = Platy+z) x(y;'{ﬂl)#+ y(z-2)g = 2{x-7)
z 2 ”;.\ i
91, z = (x+¥IPlx -y ) 0 Jtoxg =2
: g
20 2= fx) ve glx) R A
W x = flzy + &(¥) \x;‘“ ps —gqr =10
4 2 2 -
M.z o= fxy) gty .{':\\Ans« xy=mr = (P -E)s HY@=NEF @Y =0
L\ ; -
25, z = flx+zy +gx+y) O\ Ans. gqr - (Lip+@)s + (1+P) =0
NGO _ -

26 2 - ax’ + Z0Y) x:\.”; p-sr =0 or s=0

2 2 o) 2t+rt-sz=2
2Tz = z(a +2)x \Q&.’é3(+bx + Py +ax) r-

28.

29.

30.

«ad

Q. i i ir centers in the xOy
it i i adius 2 having their c
Find th{)ifferentlal equation of ail spherezs of T s 2 ; 12 (p2+q2+n -4
= 4. ns. =
plane. Hint: Eliminate a and b from (x-a) +{y-by +2 =4
and y-intercepts. Ans, p-¢ =10

Find the differential equation of planes having equal x-

tion of all surfaces of revolution having the z-axis as axis of
ua

Find the differential €4 ). 2
s bl ry’y =PE EY

Ans, yp~x¢ =0
rotation., Hint: Eliminate ¢ from 2



CHAPTER 29

Linear Partial Differential Equations of Order One

THE PARTIAL DIFFERENTIAL EQUATIONS of order one

1, px + gy = 3z and 12) px2 gy = 25

are called linear to indicate that they are of the first degree in p and g,
Note that, uniike linear ordinary differential equations, there is no restric-
tion on the degree of the dependent variable z.

All partial differential equations of order one which are QQ*L linear, as

2,) pP+gi=1 and 2.) p+lng =22%,
are called non-linear. @

L 3
S

i

A\ )

(N

LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF ORDER ONE. Equﬁﬁion 1,) was obtained in
Chapter 28, Example 4, from the arbitrary functienal relation

3) Plz/%7, y/x) = 0,0

or its equivalent z/x* = f(y/x). This soluti'oﬁ‘, involving an arbitrary func-
tion, is called the general solution of L)

The differential equation was alsplobtained (Chapter 28, Problem 12) by
eliminating the arbitrary constants.grom

4,) 2 ="ax? + by’
and from ...\\
¢ 2\J
42) z = a0+ by + cxy® 4 dy'/x,

A study of the problems,of that chapter indicates that relations involving two
arbitrary constants usually yield non-linear partial differential equations
of order one, while/those involving more than two arbitrary constants yield
equations of ordef higher than onme. However, as was pointed out in Chapter 28,
Problt?m 12, botﬁ\of these relations are particular cases of the arbitrary
functional relation 3). Itis clear then that the general solution of 1) yields
a mich great,e}r‘ variety of solutions than that obtained (in the case of ordi-

nary differential equationsy through the appearance of arbitrary constants;
for example,

3 -
z/x = A sin(y/x)* + B cos(y/x) + C In(y/x) + De®™ + E(y/x)*
is included in the general solution 3),

THE GENERAL SOLUTION. A linear

ing a dependent variab
form

5) Pp+Qq=FR
where P,Q,R are functions of x,y,z.

partial differential equation of order one, involv-
le z and two independent variables x and y, is of the

If P=0 or 0=0, 5) may be solved easily. Thus, the equation 92 = 2x+3y
ox

has as soluti = %2 .
100z = %% + 3xy + ¢(y), where ¢ is an arbitrary function.

238
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Lagrange reduced the broblem of finding the general solution of 5) to that

of solving an auxiliary system calle .
ferential equations ( d the Lagrange system) of ordinary dif-

6) dx = g}—’ = g_z.
P Q 4
by showing (see Problem 7) that

7 Pla,v) =@, (¢, arbitrary)

is tl_le general solutign of 5) provided u=u(x,y,2)=a and v=v(x,y,z)=b are
two 1ndependent solutions of 6). Here, a and b are arbitrary constants and at
least cne of u,v must contain z.

EXAMPLE 1. Find the general solution of ~\

"\

1) px t gy = 3z, :~\
N -
The auxiliary system is é .Y L& . A
x ¥ 3z '\w.
- ’:t\
From % = gf » we obtain o = z/:c5 = ¢; and from 4 =.:&, we abtain v = y/x = b.
x 2 X b

Thus, the general solution is @(z/x’, y/%) = 0, ’w?\?ré ¢ is arbitrary,

\S .
Of course, from ‘_*Z = gf. we pbtain z/y5 '6,¥ and we may write
y z s W

Ya/xd 2y =0 Rder  NY.y/m =0,
where b and A\ are arbitrary. Howevqr,“ﬁiése are all equivalent and we shall call any one

N

of them the peneral solution, \\

The above procedure ma&\\be extended readily ‘go solve linear' first order
differential equations¢involving more than two independent variables.

</
EXAMPLE 2. Pingy$he general solution of
) o\\s." az n y§£ + t a‘_z = xyt,
R\ % oy ot
N®Y
z being ¢\he§ dependent variable,
' 4

The auxiliary system is

i = = = b,
We obtain readily u = x/y=a, v = ty o N R
A third independent solution may be found by uSing the muitipliers yt, xt, x¥
x(yt) + ylxty +EEY) H (xyt) (-3
=0

=0,

ytdy + xtdy + xy dt — 3dz

and xyt - 3z = €

. - = 0.
Thus, the general solution is $(x/y, t/¥: 2y 32)
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cdulPL.ETE SOLUTIONS. If u=a and v=>b are two independent soluticns of 6) and if
a,B are arbitrary constants,

8) u=av + 8

is called a complete solution of 5). Thus, for the equation of Example 1i,
z/x’ = a(y/x) + B

is a complete solution,

A complete solution 8) represents a two-parameter family of sur;‘aces which
does not have an envelope, since the arbitrary co_n;tants enter lln_early. It
is possible, however, to select one-parameter families of surfaces from among
8) which have envelopes. As shown in Problem 8, thgse envelopes (surfaces)
are merely particular surfaces of the general solution,

\
SOLVED PROBLEMS A
O
1. Pind the general solution of 2p + 3¢ = 1. A
. dx dy dz "9\
The auxiliary system is — = = = —. ¢ &
y 2 3 1 o\
From %— = ﬁ » we have x -2z = a; and from i‘;— %y_ ‘W}’have 3x - 2y = h. Thus, the gen-
1 -
NS
eral solution is ¢ix ~ 22, 3x ~2y) =i 3

The complete solution x -2z = a(3x- 2y}+)8 is, astwo -parameter family of planes. The one-
parameter family determined by teking 8 = a? has equation

A)  x-2z - a2 -2y + a’.

Differentiating A) with respect to a ylelﬁs 0=3x-2¥+2a or a =~ 5(31 -2y).
4
Substituting for a in A), we obtain the\enve]ope. a parabolic cylinder, x -2z = - §(3x-2y) .
This cylinder is clearly a part of ‘bhe general solution,
N
.\w
2. Pind the general solutlon\of ¥? p - 29 = x y.
The auxiliary equg‘tions are & A .
.w“: ¥z %2 xly
dz 4
From —~ = \dz or zdz+ydy=0, we have y°+2%-4; from &9y e nave 2y’ =b
xy -x"z 2

Yz -x:z

Thus, the geperal solution is ¢h(y?+ 22 2eydy -

3. Find the general solution of (¥-2)p + (x~y)q = z — x.

The auxiliary system is 2%, - _d?'_ dz

¥-z -y zox

Since (y-z)+(x- “N+{z-2) =0, de+dy+dz = 0 and x+y+z = a,
Since x(y-z)+z(x~ “NHry(z-x) =0, xdc+ zdy + ydz = 0 and %2+ 2yz = b,
Thus, the general solution is qb(x +2yz, xtyrz) =

The complete solution 12+ 9y -

a{x+y+z) + 8 represents a family of hyperboloids.

*



4-

LINEAR PARTIAL EQUATIONS OF ORDER ONE 241

Find the general soiution of (xz-ya—zz)p + 20yq = 2z,

The auxiliary system is _ & dy b
A2yt 4wy

dy dz
From —— = — s Wwe obtal =
2y T ain y/z = a.
From dr _ xdx + ydy+2dz . xa’x+ydy+zdz' or dz _ 2(xdx+ydy+zdz)'
22 y(a? - y? a2y y(2y) + 2 (2ez) sxl+ ¥4 2 z x2ry?e st
12+ 2+22 .
we obtain LY IE o=,

4

¢(z, f_._+..};_+_z....) = 0.

Thus, the general solution is

The complete sclution x2 +y2 422 = ay+fz consists of the spheres throﬁ}h the origin with

centers on the plane yOz. . :’, )
O
Solve ap + bg + cz = 0, .’t\\ ’
A\
42 N
The auxiliary system is i-‘x- = d_y = “d_z_ From -— =&. we obtain ay-bx = A,
a b -cz B b
IAY
Ifa £ 0 ﬁ = d—-’—: yields Inz = - Sx+ LB o%" z= Be-cx/u’ and the general solution
'o—gz @ o ANV 4 /s
- NS dz y . _ o CY
may be written as z = € ox/o P(ay - bx). ¥~fbig 0 — b yields z = Ce , ond the
.p /b

general solution may be written as 2 = @ tp(ay—bx)-

o'\
"\\ 2z=0
Solve 1) 2p+q+z=0, 2).}:'\3:5@1»23:0, 3) sp+3g+52=0, &) groz=f

1) Comparing with Problem, 5“ above, a=2, b=k ¢= L.
N/

..x/Z =7 .. N
The general solutic{n Az = ¢(23’ _xy or oz =€ Y(y-m

-2 _ 23

2y Here, a=1 \-3, ¢ =2 The generel golution is 2 =€ g(y+3x) or Z=¢€ Yiy+izh

3) The gggef&]‘solutmn is
N

4) Thé gen’eral_”so}ution is 2 =

. e-bx/2¢{2y-3x) or 7= 8-5)/5 lp(zy_ax).

[ ]

e pen) = e-2y¢(x).

ol

dy . &z
Q

:ejn-

Show that if w=u{x,y:2) =€ and v= v{x,¥s2) = b “are two independent solutions of
= [ = A
with ¢ arbitrar¥. i the general so0lu-

where P,Q,R are functioms of %,¥.%: then $(u,2) = 0s

tion of Pp+Qg = R.

have
Taking the differentials of ¥=¢ and v = b, W8

w o & 4 = 0.
™o d.x+--dy+
Wy Day sz w oy &
kS he ratios

: 1ve for t
Since u and v are independent funct1ons: ve Wy RO

ww_ X - p:Q:h
Ax oY dy o

cuepter 28) defining PQ:R InERe equation Pp+ Qg =R whose
e Cha o

W W W

deidy:dz = ( 32 Jy 3z ox Ox &2

S;Bz

But these are the relat 1ons (se
general selution is B, vy =
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8 Let ©=av+B bea complete solution of Pp+Qq = A, From this two-parameter family of sur.
faces, select a one-parameter family by setting B = h(z), where h is & given function of a,
and obtain the envelope,

The envelope of the family
1) u=av+ hia)
is obtained by eliminating « between 1) and
2y 0=v+h@,
Solving 2y for a = um(v) and substituting in 1), we have
3w o= vep(w) + Alp()] = Ady).

Now 3) is a part of the general solution ¢(u,v) = 0. Thus, unlike the case of ordinary dif-
ferential equations, the envelope ls not a new locus, \\“

If h(a) is taken as an arbitrary function of a, A(v) 1s an arhitrary,function of v, and 3)
ts the general solution, Thus, the general solution of a linear parti;r} differcntial equation
of order one is the totality of envelopes of all one-parameter families” 1} obtained from a com-
blete solution, It is to be noted that when h{a) is arbitrary, xtQ'g slimination of o between
1y and 2) is not possible; thus, the general solution cannot h@ wobtained from the complete
solution, \

A
9. Show that the conditions for exactmess of the ordinary, differential equation

H(x,y) Mz, y)de + ,u-(x.y? N(x.y)dy 0

is & linear partial differential equation of o,?der one, Thus, show how to find an integrating
factor of Mdx+Ndy=0. (See Chapter 4.) 0%

L QY

3

is exact, then 3'(,u.‘h‘) = (;J:N) or Méﬁf - N a—'u = #(aN BM)
oy 'ax A dy ox dx Y
This is a linear partial di:ffgrentlal equation of order one for which the auxiliary system is
.'\s.
\Zm’.hl) EN = d;!z = —--—d.-'L_L..._.. .
» - oN _ oM
{\ #(ax ay)

Any solutlon. inwlvlng H, of this system is an integrating factor of Mdx + N dy = 0.

Writing 1}\11’1 the form

W _ oM W .
3 By x 'a_y d :
H - dy = W, o y
-N M Y 1 it is evident that i
N _ W
3 oV oM

_N'ay Fx), then u = ff{xidx

is an integrat ing factor,

is an integrating factor: or if 9% oY _ g(y), i = ejg(y)dy
M

Moreover, if the equation is linear (that is, y’+Py = Q), then M

=P -P
y~Q, N= 1 erd 2) becemes Pdy = Py—Qdy _% apd g = e Pdx is an integrating factor.

10. Find an integrating factor for 23y - y%ydx - (2 xyydy = (See Problen 6 above.)
Here M = 2;33(_..3,2' )
- 2y,

 J

N = (s W3
{2x xy), 3 = 2x = ._(3_:54,),)‘

L

¥
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We seek a solution involving yu of d_ dy dit
whrxy  wWyoy' py-100)
From A - “'2"{”‘3"&3’ STy de-ddy 0 dp | -Zyde-3xdy
ply -1027)  -2y(2e' +2y) - 3u(20y -y ay(y - 104) B =

we obtain In g = -2Inx —-31lny. Thus, 4= x"zy'5 is an integrating factor,

. ) 2 2 2 .
11. Find the integral surface of x p+y g+z =0 which passes through the yperbela
ry=x+y, z=1,

The suxiliary system is dx _dy dz |
2y -t
dr  d . O\
From — = 22 we obtain u:ﬂ = q, and from d_y:.g e Obtai)s,\u ¥tz b,
2 2 Xz 222 ‘A ¥z
"‘\ M“X
We first eliminate xg.¥p,Zg between XpYo =%o Yo o=l A W _XatZo _ xgtl _ .
.\’“. XaZo Xa
_Yotis _ Yot ¢* 1 e
and p = JotZo Yo T2 - b solving the latter for = =\é— s ¥n = —= and substituting
Yoto Yo ¢ A w-1 Yo T o1
) 1 1 IN\M ) .
in  xg¥p = Xo * Yo, We obtain ——————= —— or a+b =3 as the relation which
oJo mTo T Ior (a<1(p-1) e-1 'xb{\;I
must exist between a and b. Then the equation’ef)the required surface 1s
)
a+bh = wtv = LI yr= ;"f;}' or 2y +2{(x+Y) = 3xyz.
F% yr O

L2
s’~,

«a3
R

SUPFIEMENTARY PROBLEMS
¢ &\

X\
Find the general solution of ach of the following equations.
\ .
12. p+gq=: \» Ans. 2z % e plx-1
13. 3p+4g=2 \*':.?{' 3y-4x = faz-20) or PBy-4x, 3= =0
"\

4. yg -xp = z\ d(xy, xz) = 0

_ 2
15. xzp . yzqf:\é xy ¥ = x¢(1‘y—z )
16. x%p + y'q =2 x -y - sy dO/z = 1)

patey’, -2 = 0
2 2

¢>(x2+y2. y+23)=0
2 2

x4z = yPlx -2

Pxyz, x+y+z) = 0

17 yp —xq + x
18 yzp - x2g9 = xy

19 z2p + yg =2

D x(y-z)p + yz=x)g = 2=

2 2 2 2 2 2 playz 12+_72+12) =0
Nz —Pyp + y(B-x)g =2 =YY ’
« whose tangent planes DASS through the point (0,0,1).

. i surface
22. Fing the equation of all the Ans. z = 1+ 2/

Hint: Solve zxp+Yg = z 1. .
ing dyzp+q +2Y = ¢ and passing through y +z =1,

23. Find the equation of the surface satisfy A DA

x+z =2, Ans. ¥

‘.



CHAPTER 30

Non-linear Partial Differeniial Equations of Order One

COMPLETE AND SINGULAR SOLUTIONS. Let the non-linear partial differential equation
of order one

1} f(x-}’;Z;P,Q) =0
be derived from
2) g(x,y,z,a,b) =0

by eliminating the arbitrary constants a and b. Then 2) is cullet a (or the)
complete solution of 1). O

4
< ™

This complete solubtion represents a two-parameter fam.ilﬁ,'?;. of surtaces which
may or may not have an envelope. To find the envelope (i\i?.pne exists) we elim-

inate 2 and b from \\
g = Ol ..a_g. = s a-g = 0. ’*x
da b N
If the eliminant y O
3) Mx,y,7) <0

satisfies 1), it is called the singularisolution of 1); if
Mx, ¥, 2) = ¢y 2)-n(x,y,2)

and if £ = 0 satisfies 1) whilesn = 0 does not, £ = 0 is the singular solu-
tion. As in the case of ordinary differential equations (Chapter 10), the sin-
gular solution may be obtaired’from the partial differentiulequation by elim-
inating p and g from \

".\".} af af

o~ 3p og

EXAMPLE 1. @é"’readny verified that z = ax+ by —(a’+b%) 1is a complete solution
of z = px+gy-(@ +g%). Eliminating e and & from
AL

8- z—ax-by+a®+b? = 0, _‘;E= -x +2a = 0, a—i =-y+2b =0,
¢

.12 2 H ? . :
we have 2 = 5x° + 3y" — L(x®+ %) = J(z"+¥%). This satisfies the differential equation

and is the singular solution. The complete solution represents a two-parameter family of
planes which envelope the paraboloid x2+y2 = 4z.

GENERAL ?OLUTION. If, in the c?mlete solution 2), one of the constants, say b, is
replaced by a known function of the other, say b = ¢(a), then

g(x,y,z,a,¢(ay) = 0

is a one-parameter family of the surfaces of i i 1-
- - 1). If this family has an enve
ope, its equation may be found as usual by eliminating a from

&x,y,z,a,¢(a)) = 0  and 2o

" da

and determining that part of the result which satisfies 1).

é(XIY:z:a:¢(a}) =0

*
T 244‘
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EXAMPLE 2. Bet b - $(a) = ¢ in the camplete solution of Example 1, The result of

eliminating a from g = z-a(x+y)+2¢° = 6 and g__g Terirde =0 ds oz = ixeg?
2 8

which can be readily shown to satisfy the differential equation of Example 1, This isa pa-
rabolic cylinder with its elements parallel to the 0y plage,

Thg totality of solutions obtained by varying ¢(a) is called the general
solution of the differential equation, Thus, from Example 2, 82 = (x +y)? is
included in the general solution of the differential equation of Exampie 1.

When b = ¢(a), ¢ arbitrary, is used, the elimination of a2 between

=0 and g—j =9
is not possible; hence, we are unable to express the general solution as a
single equation, involving an arbitrary function, as we were insthe case of
the linear equation, : X A\

o

£ 3
BOLUTIONS. Before considering a general method for obtaining d”complete solution
of 1), we give special procedures for handling four p@es of equations.
L2 2 L
TYPE I: f(p,q) =0, Example: p°~-q° = L3O

From Problem 3, Chapter 28, it follows tl}a‘ﬁa’ complete solution is
4) z = ax + h(a)¥ ¥'c,
where f(a,h¢a)y} = 0, and a and ¢ are a.;ﬁi‘trary constants.

The equations for determining tahg":sjingular solution are

z = ax + h(a)y + V0 = x4 Aayy, 0= 1.
Thus, there is no singular §cﬁj)tion.

¢ &\J . )
The general solution jé Ebtained by putting ¢ = ¢(a), ¢ arbitrary, and elim-

inating a between PAN .

5) z = ax +.<(,;)’y tpay and O =x +hi(a)y + $'(a).

The first equat'éﬁ:«’bf 5) for a stipulated function $(a} represintilahgrikz;g)az:m;
eter family on; anes and its envelope (a part of the general s

developable Surface, (See Problem 10, Chapter 28.)

o'\\’". 2
EXAMPLE 3. Solve p -¢ - L

2 2 2
Fla,hia)y = o* - [@] -1

1] and hie) = (az—l) .

Here f(p,q) = p~q°~1=0,

2 B
A complete solution is 2z =ox + (6 —17¥+ ¢

. = tan ¢ and we have )
A neater form is obtained by putting e =sec &; then h(e) = tan 2

z=xsecq + y tang + 6. - 4:1_,‘

If we set ¢ = (a) = 0, the result of eliminating ¢ from

0 =xtang +y Secad OF D==xsing +y

z = x sec g + ¥ tanda,

2 _ 2 .2

. ot s i differential
This 4 bl face (cone) is a part of the general solution of the given

is developaple suar

equation. lete solution
Note that ight have taken A(e) = —(a""—l)yz and obtained as a comp
ote that we mig

3%
2 (a -y + e See also Problems 1-2.
' o

x

.
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' 1
TYPE II: z =px + ay + f(p@). Example: z = px +ay +3p' ¢,
ERCCIEL

From Problem 4, Chapter 28, it follows that a complete solution is
z =ax + by + f(a,b).

i for obvious reasons. This cop-
is is known as the extended Clairaut type, ' .
g?éie solution consists~of a two-parameter family of planes. The singular so-

lution (if one exists) is a surface having the complete solution as its tan-

gent planes,

6)

/3 /3
EXAMPLE 4. Solve z =px + gy + 3 "¢

1/3,1/3
A complete selution is z = ax + by + 8a b7,

-2/3  1/3 ENS =T
The derivatives with respect to e and b are x+a " b° =0 and :y‘+\a b7 2o,

4

/3,1 -1/3 ,-1/3 AN
Then ex + by = ~2a fsb /3, xy = a b . QO
and, substituting in the complete golution, we obtain the slngulza{\éblution
- a1/5 bl/s Y or xyz il}..

See also Problems 3-4.

w/

0. Example: {,\z;‘:: 2+ q%.

H

TYPE III: flz,p.q)

Assume z = F(x +ay) = F(u), where alis the arbitrary constant. Then

Jz dz du dz dz du dz
R A ~and T —— = A —
™ dudx | du > 7 du 3y du

When these are substituted i'n}t\t1e given differential equation, we obtain
an ordinary differential equafion of order one

" dz dz, _
:’.‘\'. f(z, E,a-&;)-{)
whose solution is the:}équired complete solution.

AL
EXAMPLE 5. e z = p2 + ¢’
Put z = F(x *}33 = F(u). Then p = dz/du, g = adz/du, and the given equation m&y be

reduced t \z\’= dz,2 2 dz.2
ed to ) e

Solving % - or L - du, we obtein 2vz = LA _i _(u+bh

1+a? Vi  /1+a? v 1+a® V1+a? ‘

Thus, a compiete solution is 4(1+e%)z = (x +ay+b)2 2 family of parabolic cylinders.

Taking the derivatives with respect to o and b, we have

8az

2Ax +ay+ by = 0, x+ay+ b=0.

The singuiar splution is = 0. .
’ e See also Problems 5-7. :

.Q’P;E_Il’i fi({x,p) = fa(y,q), = Example: p__xz - q+y2.

Set f,(x,p)=a,

i f2(y, g} = a, where a is anarbitrary constant, and solve to
obtain

p=F1(x'a) and q=F2(Y.B).

Since z 1 i .
Thus, 2 18 afunction of x and y, dz = pdx+tqgdy = F, (x,a)dx + FQ(Y,a)dY
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T z =fF1(x,a)dx + fFQ(y,a)afy + b,

containing two arbitrary constants, is the required complete solution

EXAMPLE 6.  Solve p-g=22+42 o pual = giy?
: 2
Setting p-x"=g¢g, q+y2=a. we obtain p=a+ 2, q:n—yz.
Integrating dz = pde + gdy = {o+x%)yde + (a -yz)a'y, the required complete solution is

3
z=ax tx/2+ ay ~ y5/3 + b, There is no singular solution,
See also Problems 8-9,

TRANSFORMATIONS. As in the case of ordinary differential equations, it is possible
at times to find a transformation of the variables which will (éduce a given
equation to one of the above four types. N

The combination px, for example, suggests the transforg}&f,iﬁnzx =1n x, since

then _ \
Bz Gz dX 13z N 3
E — = e — = = o and = e
PP % "a& xxx =
3z oz D22 v
Thus, - + p?x? becomes = = 2+ (Z%) of Type I.
g=px+p > - ’a-—s)?&“

Similarly, the combination qv sugges{t%fthe transformation ¥ =1n y.

The appearance of g, g in an equ:il’t‘iiin' suggests the transformation Z=1nz,

Wy, 3z
i o0z _ dz 3 N, Es-i)—z; similarty, 4= £,
et Tawal w T : " %
Thus, 2= (B)? become,s"\-@\-—z = (%Z)z, of Type L
i ‘ ) 4 ' See also Problems 10-14,
N\
"‘"\'Q.. - - a
COMPLETE SOLUTION. Q:L&f{éIT’S METHOD. Consider the mon-linear partial differential
equation AN g
1 Ay fix,y, 2,00 = 0.

Since z\g a function of x and y, it follows that

8) de = pdx + qdy. e
j bitrary constant, substitute in

L = ,y,z,a), where a 1s an ar

1?tanufi :E?Egetg ob;’a(:jfnyq = i(x,y, z,a). For these values of p and g, 8) becomes

81) dz = udx + VdY'

Now if §,) can be integrated,_yielding
9) gé{x,y.2,a,b) =0,

this is a complete solution of 1).

EXAMPLE 7. Solve pg+ gx =YX

Take p = a-z, substitute in pg+gx=Y»
we have dz =

and solve for ¢ = y/a
d dr + gdy (a~x)dx + (y/a)dy, an lntegrable equa-
Substituting in dz = p d '
tion, with solution
z=ax_5x2+%y2/“+4k

or 20z = 2% -’ + yP 4 b
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gince the success of the above procedure depends upon our making a fortu-
nate choice for p, it cannot be suggested as a s‘gandar_‘d procedure. We turn
now to a general method for solving 1). This consists In finding an equation

10} F(x,y.z,p,q) =0
such that 1) and 10) may be solved for p= P(x,¥,2) and ¢ =Q(x,y,z), (that is,
such that
of A
3p 9q
11) A = # 0, identically),
oF oF
?p o9

and such that for these value of p and g the total different;a\L ecquation
8) b = pdx+ady = POy, 2)dx + Qx,y. )y
is integrable, that is, P28 - pF ¥ X _ %@,

2z 3z Yy Ox axx.\\a‘y

pifferentiating 1) and 10) partially with respe:c\t to x and y, we find

12) o, 2, U, B

Ax 3z b dx N\eg X

{ W

13) E{ + qE + 2’_5.33 + E?-C-" = 0,

Ay g p Yy g dy

. &

F A, oF 3 3F 3
14) o+ p oy K22y 24 -

Ox ’QPE 9p ox 9g 9x 0.

PR F , F 3 OF 2
15) B, g Fop  F g

’ vy oz dap dy Qg dy 0
O
. RN\ oF
Multlply},pg:\'lz) by ' 12) by §.‘f, 14) by - a_f, 15} by - of , and adding,
Q D 3g ¥p g
we obtain (noting that o _ 9q
¥y Ix
of of
(§£+p*_a—)%£+(§£+qaa_f).‘a£_?_f_a_lr_£?£_(pa_f+q?£§f:0-
z dp dy 9z dq 3p Ax Jg Iy 3p Bdg 9z

Elfnihls'a linear partia}l differential equation in F, considered as a functionl
e lndependent variables x,y,z,p,q. The auxiliary system is

v

16) b _ dg _ _ dx _ dy dz _dF
ﬁ:,p?af' o | _of of of of 5f, 0

w* TP 5 res - oL pfag

y T 2z ap g op Ag

Thus, .
or bOt‘;e ﬁgﬂﬁake ior" 10) any solution of this system which involves p OT a
: contains an arbitrary constant, and for which 11) holds.
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EXAMPLE 8. Solve ¢ = ~xp.p?,

Here f=p2—xp-q 5o that g'f=_p, a—f:g, _"?Jf:g- of

g - of
Bx oy oz ' =%z, é} = -1, and

of of of , of o
4 - 7 -p, — - = - K
R %0 T e

The auxiliary system {18} is d_P = i‘E = H.ﬂai_ = ﬂ = dz

-p 0 -2+ 1 -2 +xpr g
f
From ¥ o & v Wehive Inp=-y+Ing o p=oe?,

-p 1
Using the given differential equation, g = —xp+p2 = _axe 4 aze-zy

Then dz = pdr + qdy  becomes dz = ae ™V dx + (—axe 4 aiehzy)dy. ~ Integrating,
Y gate s, N

There is no singular solution, W)
e 0 See also Problem 15.

I = Qgxe

L 3
A
e

ON
SOLVED PROBLEMS .\~

\

{In these solutions, the equations leading to the geus:;‘ﬁ’solution %ill not be given.)
O

TYPE I: f(p,qy = 0. )

1. Solve P+ g% -0, "\

™y 2 2
A complete solution is =z = ax + by ¥, where « + b° =9,

& \
The eguations for determining ghQ\EinguIar solution are

o 28
2= ax+ JoooZ v+ 0 = x‘-—\ a y 0 = 1., Thus, there is no singular solution,
- ' . ' .
O P
P\~
2. Bolve pg + p+g= i(h’{
A i = ¥+
) ; = = gy - .
A complete sol(t,t\ion is z = ax+by+e, vhere abtatb=0, or z o+l

There is mtgiﬁgular solotion.

) 2

"4

TYPE If: 7 = px + qr + f(p.a).

3. solve z=px+qy+p2+pq+q‘2.-

2, ab+ b
A complete solution is 2z =ax+ byt e
o and b, we have

Differentiating the complete solution with respect to
ﬂ=x+2a+b, 0:y+a+2b.

Solving to obtai (y-2%)/3, b= (x=-2/3 and substituting in the complete solution,
ing to obtain a = (y- » 0

2 4
the singular solution is 82 = 2y - %" = ¥~

4' SQIVE z = + + 2q2| s
mrmIpE 22, The equations abtained by differentiating with

A complete solution is z =ax + by + @
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33 3

2 _ 2 - y_, - 5\'.'2

respect to a and b are 0 = x ¥ 90b? and 0 =y + 2a°b, Then @ J ™ b= f~2;
3y2 3 -z 3 2yt 3

and the singular solution is z = - % Ex- - z—y +

. .34 leayz/a_
4
TYPE III: flz,p,q) = 0.

§. solve 4(1+ 2%y = ezt pg.

Assume z = F(x +ay) = F(u), Then p = g—z. g =0 5}— , and the given equation becomes
u
72 2
4{1+z3) = Qr:zz“(-c-f-i)2 or Sve r dz = 2du,

V) D

A

Integrating, /a(i+z y = u+b, and a complete solution is a(1 fd )  (x+ay + )%,

Using the results of differentiating this with respect to a and by
3

1+ 20 = 2xray+ Oy and %:g+ay+ by,
the singular solution is 2+ 1=0. v
'x:\\.;
\
b. Solve p(l-g) = q(i-2), \\\\‘
L ¢
dz A7 dz . _
Assume z = F{x+ay) = F(u), Then p = — ...\qm a a—- . and the given equation becomes
T u
(—)[1‘* z jz)z] = aj_:.(l:';{\ " or (Z—z) (1-a+ uz-az(-d—z)z] = 0.
4 &\J
Then d_(zx=0 and z = ¢; oL 1 a+az-a2(if)2 =0, _ai{__u = du and
’, du Vi-a+az

Wi- a+az'\~u+b =x+ay+b or 4(l-a+a2) = {(x+ay+ b)-.

Fach of z = ¢ amk,él(l at+az) = (x+ay+b) is 2 solution; the latter is a complete so-
lution, Using 1t t{% equations for obtaining the singular solution are

= 4(1- a+az}"\ ‘(x+ay+b) =0, gi 4(-1+2) - y(x+oay+b) = gi = —2(x+ay+b) = 0;
there is no\i«ngular solution.

71 Solve 1+ p2 = gz,

Assume z = F(x+ay) = F(u), Then p = ‘-}fx g=a :_z , and the given equation becomes
i
dz 2 dz dz
(—) a +1 =0 or - %du.

az - azzz—q

Ratlonalizing the left member of the latter equation, we obtain (ez + veZz% -4)dz = 2 dit

whose solution is Laz? + 1{%5 Va?2®_ 4 _ 2 1n(az + va2:? -4y]
a

= 2u+ by,
A complete solution is then 2% + 4z /azzz_4 _ 41n(az+ /4 2,2 2y - 4a(x+ay+b)a
2.2
Not;:zthat a‘z® w ez v/a%:%_4 4+ 4 Infaz + 22 Z4) = da(xtay+b), obtained from

du s a & Co Ete 301
, L ].SO mpl
Z D utlol'l.
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TYPE IV: fi(x,p) = f2(y,9).

g solve Vp -V +3x=0 or vp+3=yg,

set /f’. + 3x = ¢ and 1/5 =a, Then p = (au.—?.zc)2 and ¢ = PLIY complete solution is
;= [pde v fady v b = fe-3Pde+ ®fdy+ b o oz = —E(.:s—'.’.::)3 + ay+ b
. 9

There is no singular selution,

g, solve 1 - —px 4 e :
Set pz_!,x =a and g=a, Then p = %(x+\/x2+4a).'

Sfx+ Vx®+garde + afdy + b ’\{\
Lt xvalr ey + aln(x + Vs’ + g )d:‘éy + by

Another complete solution is obtained by the method of Charpit in Fxample 8.

A complele solution is  z

or 4

There is no singular solution, \\
USE OF TRANSFORMATIONS. R ’
21 L ":{'\‘
10. solve pg - xmynz or £ . q—n-' =1, \\\\t
&y (N
The transformation »w
1-1 m+l n+1f.:':f’ 37 de 41 2 _3ddy _ -t 1
7P, x=%—_, v =ia A N T 55 yat S0
1-1 m+1 asl % Bx dX x y ¥
\J
NI 3 32 _
reduces the given differe?’tfi:e‘{l equation to B—X.'SE’ =L
2O 1
This equation is oMpe I and its solution is Z =ak+ a_Y te
i»\:z. . 1 nel
o\"‘ . .Zl : - ﬂx,“ + _...-—-—y + C.
A complete’s@‘}ution of the given equation is rov i 1t amen
There rs\}rw singular sclution.
"4
11- Solve x2p2 + y2q2 = Z.
1y The transformaticn
Az W L o7 u Ly gy
X=1lnx, Y=Iny Z-=25 Z 55 T af oydf
Fz , 2.1, of Tye I
JZ 2 92 _ T =Y+ (= =
reduces the given equation to Z{'(—)..-X) + z(é-;) =2 9 (aX BY)

A complete solution is Z = aX +bY + ¢ OF

The si i = 0. g
ingular solution 1s z 3z oz dl | 1 @3' g = _1.?3:
4 2) The transformation X = In %, Y=1ny P~ 5; o ** v
= 0z.2 of Type III.

az.2 = Z
. ZY r (= =
reduces the given differential equation to Lax) (BY)
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9z _ dzr Qu _ dz di  dz
We set z = F(X+a¥) = Fu). Then - = —= =2 = —== b .::(_1E ' and

@2 2d? ., o e d a2
du d!.l ‘/;
Integrating, 2v1+a’ ZJ‘; = u+bd = X+a¥+bh = lnx+alny+ b,

2 A
A complete solution is 4(1+ a’)z = (Inx + alny + b)°. The singular solution is z - g,

12. solve dayz = pg + 2px2y + 2‘?"32-
n ) o ] X G
=X%, y=Y. Then p == === = — and g — =Y =.
Let x=X% ¥ Py o & By’ dF dy Y

N N\
dz oz dz 2\
Substituting in the given equation, we have z = X — + Y — + — _B_\ of Type II,

oX aY APy
N ™
A complete solution is 2z =eX + bY +ab or z =az’+ byit ab,

Fliminating ¢ and b from this and 0=x%+b, 0=y%+a, obﬁ&hhea by differentiating it
with respect to a and b, the singular solution is found tope\z + x%y® = 0.

2 2 x\\.;
19. solve p°x" = z(z-gy). <!
"\
W
The transformation Y=1ny, X=1nzx, . ‘.;3 = é.z. = :a.i d_X = l EE g = l§£
:f s’ & aX d-x x M b BY
reduces the given equation to  A) (2-'—;)2.:%";21 - Ei), of Type III.
3
&\
- dr 9z dz dz 2 2 dz
We set z = F(X+aly = Fluy, Thgnaz=_..._‘= —, and AY b hoiny S -z —
B P adu an } becomes (du) z azdu

dz

Then @ = J‘,z(;/a2+4-a),“:g?i—z = (/a2+4 - a)ds, and 1In 2% - (m - a)(ut+b)

A\
A complete solution i:s\'w' In 2% = ()"u2+4 -a)(lax +alny+ b,
There is no singular~salution,

O
14. solve p® + 2% z?(x+y) oo &+ GH? - xs y
w\. z ¥4 ‘
)
The transformation Z=1nz, p-=2z g—.z. g - z .a_g reduces the given equation to
X
aZ 2 a7 2
(= ¢ (% . oL 2 _ oz 2
> (By) xty or (5;) -x_y—(é-;) » of Type IV,
o732 az ' ]
Set (_-) -r = e :y_("_)za Thi a—z= i’ BZ- %
= 5 e o (a+x)* and = = (y-a)°.
A complete saiution is Z = f{a+x)%dx + f(y-a)*dy + b
or 1lnz =

2
§(a+x)m + -g(y-a)yz . b
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CHARPIT'S METHOD.
15. Solve 16p22% + 9g%:% + 422 . 4 =0,

Let f(x,y,2,p.q) = 16p%2% + 9¢%22 4 4,2 _ 4.

of of of
Then =< =022, &= g9, 2 of _ 2 3
Bx Sy 3z 'z v 18972 + 82, 3_,; = 3%p2°, :;;c = Iquz, and the aux-
iliary system % = % = ___dx = *_dy = dz i
A p¥ ALY ¥ ¥ ¥, ®
ox oz oy oz I 3q p ¥ 1 g)
dp . dg . & Wy . C dz
32p°2 + 18pg’z + Bpa 32%z + 18¢°2 + gz -32p27 ~18g2%* ,\ -32p%2% . 184727
Using the multipliers 4z, 0.1, 0,4p, we find
42(32p z o+ 18pq z + 8pz) + 1(-32pz )+ 4p(—32< - 18q %) =0
and so de + dpdz + dzdp = B\ :
- s\
Then =z +4pz=a and p=- fZ—E . Substitut@:g for p in the given differential egua~
% 3 N\
tion, we find (x-a) + 9q%22 + FPLNPR 0.. o/ Usmg the root ¢ = §'-V‘1 %= f(x-a)?

g

_ 8z dz + f(x~a)dx]

dz = pdx+ gdy = =22 dx + —2- L.S.'zz;{t(x.-ﬂ)z dy or dy =
4z ) _ 2y 1~ 22 Jix-a)
) 2
Then y-b = _EI/ - \tw:a) or fL’.EL,,_‘_’_.'_M_ + 22 = 1 is & complete
2 4 9/4

solution, This is a family of ellipsoids with oenters on the #Oy plane, The semi-axes of the

ellipsoids are 2 units(parallel to the x-axis, 3/2 units parallel to the y-axis, and 1 unmit
The singular solution consists of the parallel planes z = t1,

rarallel to the z- axl\é

Another comp}e\te solution may be found by notmg that the equation is of Type III, Using

d dz
Fix +ay) im) dnd setting p = a"’ and q o Eu—’ the given equation-becomes

d 2
dz 2 dz. 2 z4dr S du. Then
1622 2 "' -4 =1 ar

( + Ba"2" (— ) + 422 - 4 /1_-?, ;-G+ 5

(u+b5 = (x+ay+b).

/16+ pa? 16+ 8a?
] =
= +bh represents a family of elliptic cyl-
indoremplete solution (16498 }(1 s ) foaihe )najor axis of a cross section lies In

inders with elements parallel ta the xOy plane. "
the xOy plane and the miner axis is 2 umils parallel te the z-axis.
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SUPPLEMENTARY PROBLEMS

Find a complete sclutien and the singular solution (if any).

16 p=q Ans. z = bz +by+c
17. P2+P=q2 z = ax+by+c where p2=a’+a
8. pg=p+g (b-1)z = bx + b{b-1)y * ¢
19. z=px +gy +pg z =ax + by + ab; S.5., I = —x¥
B pd = w2 2(lea’) = eays YD s, 2 -0
2l. pz =1+ qz : 2 - z\/zz-‘laz + 4a% In(z + /2% - 4a? )‘\-—- 4(x v ay+h
22. 22(p2+q2+1)=1 (1+azj(1~zz) = (x+ay+b)2; S;?‘n;.\>2—1 =0
23. p2 +pg = 4z (l+a)z = {x+ay+b)2; Se S g &:\;: 0“
M pPox=q -y 3(z-b) = 20+ )’ +N{t§§a;§“
%. yp-xq =xy 4e-1)y = (3z-—a.x3..'-’5§2
26. (l—yz)xqz + yzp =0 (2:—:1:24- b)z\»-;j\xq{'a\(yz-l)
2. 2*pt -yg-2t =0 x1lnz = :}"(:2— 13x Iny + bx
Hint: Use X=1/x, Y=1ny, Z = 1nz. ,;’,“5«“
28. xqu + yzzq _2? =0 gcy‘lﬁ'; =ay + (az—z)x + bxy
Hint: Use X=1/x, Y=1/y, Z=1n z\\\
9. xqu . yzq -0 ’ \\\, xz(zy+a+ by)2 . ayz -0
- 30. 2py2 - qz.z =0 | \,w 22 =y a.y2 +b
3. g=ap+ P2 {\x{\' 2 = 2axe” + 208%™ + b

2 2 2,'\\
32. zp  ~-¥p +y‘,¢lv\_g yz2 - 2(H3+ﬁy2+az+b_y)

AN

RS

Hint: {} : . pz=a and g =‘.l.(1-..a_).
o ot z X

3. pg+2a(y+lp+ yy+2q - 2y +1)z = 0

Ans, z:ax+b(y2+2y+a); s.s.,z+x(y2+2y)=0



CHAPTER 31

Homogencous Partial Differential Equations of Higher Order
with Constant Coefficients

AN EQUATION SUCH AS

3 3 3 2 2
1] {’x2+y2)i_z+2x-a_z+3.£__a_f+5xy-i__{+x3§f+x_a_z+yz:ex+y
3x> dx 3y2 3y5 Ax? ox3y ox oy

which is linear in the dependent variable z and its partial derivatives is
called a linear partial differential equation. The order of 1)Wis three, be-

A

ing the order of the highest crdered derivative, BPLO N
A lincar partial diffetential eqguation such as O
3 3 3 P ,o\\’“'
2) x2 32, xy aiz i 22 22 + -—-E"\zl.xz + ¥y,
ij ax oax 3y E]y‘s‘.x

in which the derivatives involved are all Q@ﬁe same ordt_er, will be callgd
homogenecus, although there is no agree\mgn;: among authors in the use of this
term. O\

’."‘:x )

WITH CONSTANT COEFFICIENTS. Consider

N/

HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS

&gy,

» O &
N Lz 2 A2
4) Y I A +c3_§=0,
’ , . x? oxay oy
,{{.\
\“': 7 2
5) {\ .4?2 +B_a.._f.. +_C_?.._Z = x + 2y,
.”\“ :’ axz ax 3}’ ay

" \ ¥
\ W5

in “’hi(}/the numbers A4, B, C are real constants. ' N
It wi roceed that the methods for solving equaliohs
N thoce vend in sol ordinary differential equation

parallel those used in solving the linear

' d
fF(DYy = Q{x) where D = e

= and D, = 2, so that equations
We shall employ two operators, Dy = p™ YT 3y
3)~5) may be written as _
3") £(D, D))z = (4D * BDyz = 0
2 —
4y F(Dy, Bz = (AD: + BDDy *+ CDy)z = 0.
. . = x % 2]’-

5!) f(Dx;Dy)z = (AB: +BD!-‘DJ" + CDy)Z

255
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Equation 3') is of order one and the general solution (Chapter 29) is

= @y = 2-\'). ¢ arbitrary.

Suppose how that =z = H(y +mx) = p(u), @ arbitrary, is a solution of 4'y;
then substituting

_ 3z _ dpdu _  do Dy = 2 . dbu _ dp
Dz T 3 du x = T ¥ Ay du dy du

in 4'y we obtain
(E’f.i’)’(Am’+Bm+C) = 0.
du

Since ¢ is arbitrary, dob/du is not zero identically; hence, m K\ one of the
roots m=m,,m, of Am?> +Bm+C=0. If my#£m,, 7=y (y+myx) and o (y +m,x)
are distinct solution of 4'y. Clearly, M:',“x

z = ¢ (y+tmx) + G (¥ + myX) "’}; '

is also a solution;, it contains two arbitrary functkcrﬁ.'s and is the general
solution.

v

More generally, if NY;
O

6) £(D;,D)z = (Dx-mloy)(nx—mgnyg,§;:...-(Dx-mﬂoy)z = 0

and if my #my, # reveeeee # my, then{,’..f’""

) z = (Y Emx) + G (rRIx) +oeeseis + (Y +mpx)
' L\
is the general solution of f(px\)y)z = 0.
¢ \\,.‘
EXANPLE 1. Solve (DZMDD, - 603z = (D + 2Dy)(Dy - 3Dz = 0.
Here, my = -2, m, = 3\” “and the general solution is y = iy —2%) + Po (¥ +3x).

s‘

N See also Problems 1-2.

If m,‘:m\:* c=my#Fom,, # o000 £ m,, so that 6) becomes

1
6') }} D Yz = (D _miny)k(‘ox“mkﬂby) ..... (Dx_.mﬂDy)z = 0,

the part of the general solution given by the corresponding k equal factors is

d>1(}’+m1x) +X¢’2(Y+m1x) + th‘f)a(yi-mlx) 4+ sraaas + xk_1¢k(y+m1x).

and the general solution of &'y is
z = ‘i’;()""mﬂc) + x¢, (y TR XY f oenene # xk'l¢rk(y+m1x) + ¢k11(3" +mk+1x}
+ ¢n 6% tmyx),
where &,,¢,,.....¢, are arbitrary functions,
EXAMPLE 2. 3 _ R 2
Solve (D, - DD, - 8D,D} + 1200y = (O, - 20} (D, + 3Dz = O

Here, =
My =My =2, my=-3 and the general solution is z = ¢ (y +2x) + xby(y + 2z} + by (y = 32D

See also Problems 3-4:
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If one of the numbers, say m,, of 6 is imasi
. ' ’ 151 .
the conjugate of my. Let m =a'tbi gud Mprvid Eﬁeihii'c'é?eﬁécﬁ;fis”” *

Yy F(D,, Bz = [D, - ' ;
g'h (B, D))z (D, fﬂ"b‘)py][Dx"(a“blwy]@x-maﬂy)"“-(Dx-m,;Dy)z = 0.
The part of the general solution given by the first twe factors is
b (v +ax +ibX) + $y(y +ax —ibx) + ildy(y +ax +ibx)~ dy(y + ax — ibx)],
(#1, &, arbitrary, real functions), and the general solution of 6'') is

z = Py +ax +ibx) + ¢ (y+ax~ibx) + i{d,(y rax + ibx) ~ b, (y + ax - ibx) ]
+ ¢3(y+max) + rrrenesa +¢)nfy+%x)‘

~

EXAMPLE 3.  Solve (D - IiD, + 205D, ~ 50,05 + 30} OB
s+ @ - DD, ¢ 5(1+ ivIDDY] [B;gj; ¥ - LVADDL = 0.
Here, my =m, =1, mg=~(1+ivTD), . 1 i.»/l_f).’:taﬁ;i”}:he general solution is
o= Py rx) + xby(y 4+ dyly - 51+ /D2l + %BE $(1 = £yIT)a)

+ ifde{y - §(1+ iVID3) ~ ¢4{y~§\\g‘fi ~ iys}],

i’.\;‘: See also Problem 5.

The general solution of
5") F(D, D)z = (DL + BD, + CY)z = x + 2y
& |

consists of the gemral.'@hion of the reduced equation

4 FD, D) = (AD} +BDD, + €Dz = 0
\¢

plus any particulazr’integral of 5'). We shall speak of the general solution

of 4') as the\c'cjm‘plemntary function of 5').
"\

In Setti)fg\ up procedures for obtaining a particular integral of
N

) \?Eﬁ;,ny)z = (Dx_lmipy)(Dx”mieDy)""'(Dxf'mnby}z = F(x,¥)
we define the operator L1 __ by the idemtity
£(D,,Dy) |
| = F{xtY)'
D D) — F(x,¥) _
P By (D, Dy)
The particular integral, denoted by
I . . 1 D F(x}Y)l
z = _......_.._--—--f{D 7 )F(X,Y) = (.Dxumlpylwx_mﬂpy).....(ﬂx—-m,, y)
%0y
. ; irst order
may be found, as in Chapter 13, by solving r equations of the firs
, 1
. . . 1 e, caen, z___u’.‘:.—-—-—-ﬂ—'—ﬂﬂ_i.
9 wu, =L FExy), T yTap D, - msD,

Dx - m,;DJ,
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Note that each of the equations of 8) is of the form
10) p - mg = £(x,¥)

and that we need only a solution, the simpler the better. In Problem 6 beloy,
the following rule is established for obtaining one such solution of 10):
Evaluate z = [g(x,a—mx)dx, omitting the arbitrary constant of integration,
and then replace a by y+mx.

2 2 _ ~
EXAMPLE 4. Solve (D - DD, - 6Dz = (D +2D)(D -3Dz = x v,
From Example 1, the complementary function is 2z = by (y - 2¢) + Doy + 3x),

= L S AT
D+ 2Dy b, - Bﬂy\

1 )

a) Set ¥ = —-c——{x +y) and obtain a particular integral of (D, - 3D{u*= x +y.

x 3y

To obtain the perticular integral denoted by =

£ b
Using the procedure of Problem 6, we have u = _f(x +a —3x)dx .s.fgx—xz and, replacing @
by y+3x, o =xy+21:2. K7, \dt
(xy +2x") and obtain\a particular integral of
Dy + 2Dz = xy'&?.‘?: .
£
Then z = [[x(a+2x)+ 2% Jdx = %cu:z + %xS +and, replacing a by y-2x, =z = éxzy + %xi.

Thus the general solution is z = @,(;4:21) + yly +3x) + %xzy + %;

1 3 1

b) Bet z = u =
D, + 2D, b, + 2D,

~

A\ See also Problems 8-9.
¢ '\’\,.‘
_ The method of undeteljm‘ined coefficients may be used if F(x,y) involves
sin{ax +by) or 005(375%.53’)-
EXAMPLE 5. S({lwfg-“
2 + 5D.D. + 58"
% Dy + ,Dy‘]. = [D, - 3¢5+ /g)Dy] B, - 3¢5 - Vg)Dy]z = x sin(3x - 2y).
:¢.\'¢
The c@%ementary function is z = @[y + $(=5 + v5)x] + buly + $(=5 - vBix).
Take as a particular integral

z = Ax Sin(3x—2y) + Bx cos{Sx—Zy) + 0 Bin(ﬁ_zy) + I cos(3x—2y}. Then

Dz = (64~ 9D)cos(3x ~ 2y) — (6B+ 9Cysin(3x - 2y) ~ 9Ax sin(3x - 2y) - 9Bx cos(3x -2y},
D =

nyz (24 + 6DYcos (3x — 2y) + (2B +8C)sin3x - 2y) + 6Ax sin3x - 2y) + 6Bx cos (3x - 2¥)
0¥z = - _

2 4D co5(3% ~2¥) - 4C sin(3x-2y) — 44z sin(3x - 2y) - 48x cos(3x - 2y),

and

2 2
Dy + 5D,;Dy + 5DJ.)Z = Ax sin(3x - 2y) + Bx cos(3x—2y) + (C + 4B) sin(3x - 2¥)

+ (D- 4A) cos(3x—2y) = x sin(3x —2y).

4 and the particular integral is
# = x 81n(3x-2y) + 4 cos(3x - 2y). The general sclution 18

Paly + 35 + VByax] + dy[y + $(-5 - vB)x] + x sin(3x—2y) + 4 cos(3x — 2y}

Ther 4 =1, B=C=0, p

Ul

See also Problem 10.



HOMOGENEOUS PARTIAL EQUATIONS, CONSTANT COBFFICIENTS 50

Short methods for obtaining

ti -
Chapter 16, may be used. rerticular integrals, analogous to those of

"‘-"_-}"""'_eax"by = __,,_]-_eaxi-by .
f(D,. D) fa, by’ provided f(a, b} # 0.

a)

If f(a,h) = 0, write f(D = a :
(D,.p,) = (B~ -pr}r 4(D,, D), where g(a,b) # 0; then

1 1 ax +by 1
e = 1 ax +by 1 X axes
A, .7 (D, D e - x y
(Dx bD}") g{ X 3") g(a[ b) (Dx - EBy]f g(a, b) 1
2 — sin(ax +by) = ' 1 ,
N 2 F — Sln(ax +by) and
f(Dx)Dny;Dy) f('-az,—ab,—bz) N
AN
"'__'_'1_ cos{ax +bhy) = 1 ( b‘:)’ \
¢ = e CO0S({ax + DY)
F(D; DD, D) f(-a®,-ab, -b%) O
DI'OV ld(‘d f(_azi_ab’ _bz) # 0. '\o\‘.;'

¢
y
\"
S )

2 2. . : v/ 2ers , |
EXAMPLE 6. Solve (D -3D0 +20)z = wx_ﬂy)’(g}?\kgpy}z 2 B Y sineoa).
The complementary function is 2z = @y(y +x) *.\\‘é%(}' +2x).
A

N

Now T—"l__z Pt 5 1,,‘:‘:"; &Y éez’”” is one term of the
D - 3Dny + ZDy 2"~ 3VS“3+ 2:3
particular integral. Since ¢, (¥ +x)‘\inciudes ex*'y’ we write
i K4y 1 i\ XY, - 1 - 2 1 x+¥ x4y
—_— e - (_:_,v.,__,_e ) = _._( £ y o= = e = ~X€ a
2 . -
Dx—3Dny+2,D; D, -~ Dy Dp-2Dy D,-b, 1-2'1 b~ D,
. 2O~ L 1
Also, — 5@(&-2” = sin(x - 2y) = BET sin{x-2y).
N4 ~13 (-
Dx-3Dny+2{)é”} -1-3(2) +2(-1){-2)
QO o Loaxesy ey 1
Thus, the ge“ﬁ«(l;f"solution 1s  z = Ga(y+x) + Poly +22) + g€ F A -i-gsin{x-zy).
A

F(x,y) = Zpijxtyj. where i,j are posi-

¢) If F(x,y) is a polynomial, that is,
forer . - procedure illustrated below

tive integers or zero and p;; are constants, the

may be used.
EXAMPLE 7. Solve (D:-—Dny-SD:,)z =% Y0 (Example 4.)
For a particular integral, write 1
D 1
1 LN = — ——
1 (xiy) = 1 1 x+y) = _.;{[1 +ﬁi‘+- Jx+ 9} 2(;v:+_';r+D’c)
- 2 2 p DY B o}
1
L 15,12 tnatD(x+)=1a.nd—-=jdx.
= ?(x+y+x) = .12(214.3) = §;_.+§x Yo | Note y y o

Dx Dx . N
. | o gee also Problems 11-13.
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SOLVED PROBLEMS

1. Solve fD?; . 2DiDy _ DxD: _ 2D;)z = D, - Dy)(Dx + Dy)(Dx + 2Dy)z = 0.

Here my, = 1, my = =1, mg = =2 and the general solution is

2 = Py(y +x) + Poly=x) + Paly —20).

9. sotve () - 507D, + SBD) + 30z = (B = 30D - A+ VDB -1 - D)z = o

Here my =3, mp = 1+ V2, my = i—-v2 and the generazl solution is

2 = Pyly+3x) + Paly+ Q+vDx] + Poly+ (1-v2)z},

2 2 \,Z”.x
3. Solve (O} + 30D, - 4Dz = (B, - BH@ + 2Bz = 0. N
Since my = 1, my = my = -2, the general solution is x\\*
= Byly +3) + $aly -2¢) + x¢3§x~-‘x§z;§-, Another form of the
general seclution is 2 = oy +x) + Paly —2¢) ¥ ng{y;zx).

0.
W

4. solve (D - 20002 + D)z = (@ - By + D)z\‘ 0.

Here my =m, = 1, mg = m, = -1 and the general solution is

2 = Paly+x) 4+ xqﬁzérmb +yly —x) + x Py -2).
L\

\\
2
5. Solve (D ~2D.D, +5Dz)z [D\ (1 +20D,][D, ~ (1-200,): = o.
Since m1 =14+32i, my = 1 2:. the gemeral solution is

= dy(y+x +2¢\x) + Puly+x=2ix) + i[Poly +x +2ix) — Py(y +x ~21x) ],
where ¢1,d>2 gre real\(unctions.

If we take qb,\(q} =cosu and P,(u) = ¢, then since

O,

= cos bxr + i sin bx, sin bx = %(e‘.bx — e,
1

wibx { -t

e "™ = cos bx - i sin bx, cosg bx = %(e‘bx + e tbx).
iy +a+2ix) = Cos(y +x} co8(2ix) ~ sia(y +x) sin(2ix)

= Co8(y+x) cosh 2x - ¢ sin{y +x) sinh 2z,
by (y+x-2ix) = COS{y +x} cos(2ix) + sin(y+x) sin(2ix)

= cos(y+x) cosh 2x + { sin{y+x) sinh 2x,
Paly +x +20x) ~ Doy +x=2ix) = TFHIE _ -2z | ey+x(e'2£x _ e.-zix) . pidt sin2a

Thus, we obtain as a particular Integral
z =

feos(y +x) cosh 2x - i sin(y+s) sinh 2] + [co8(y +x) cosh2x + t sin(y+x}sinh2’=]

. L4
F Qe T sin 2) = 2 cos(y+x) cosh 2x ~ 207 sin 2x.

Note that z it a real fumction of x and ¥,
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Show that a particular integral of p-mg = g(x,
¥) @8y be found by integratin -
omitting the arbitrary constant of integration, and then replacing agby yfmdz g(x,a-rz)dz,

The auxilisry system is & = % | .1 . '
I = gy nt(_agmmg the equation formed with the
first tdo terms, we have y+mz = ¢, Using this relation, the equation
dx d
— = = becones W - __ 42
1 gix,y) 1 g{x,a~mx)

Then 2z = fg (x,a-mx)dx and, in order that no arbitrary constants be involved, we replace
a by y +mx in the solution,

Dsing the procedure of Problem 6, find particular integrals. of ~
. N\
a) p+39 = cos{2x+y¥), b p-2q = (y+1)e§x. '.\
a) Here m = -3 and g(x,y) = Co8(2x +¥). )
Then 2 = fg(x a-mx)dx = fcos(2x+a+3x)dx = —sm(ﬁna) and, ra@acing a by y-3z, the
&y
required particular integral is :z %sm{ﬁx +¥) \J
2 w2 3
b) ¢ = Jgxa-mnde = fa-2ene” ds = *W*”"jx\‘ ChANE
\ \
{ 2 3 23 _ 1 5, 3x
Replacing a by y +2x, we have z = %{y+2x +1“}e.§m - Exe + ae = ‘5(.7 + 5}8 .

")
AL
N
3

's

Solve (D} +2DD, ~ 8Dz = (B~ zag\}wx +ab)s = VBT,
~\

The complementary function is z\— oty +2x) + doly—dx).

1 Wy
7¢ + 3y, we obtair from
To obtain the particular 1ntegra1 denoted by - 2%){1)”4.4[) y Y
‘\’ /2 4
Dy +4Dy)u = V23 + 3y t\hé‘solutmn a = j'[zms(a-m}l1 - fl2ev30+ 0]
C\ : . /2, iz _ 1 342
\ = f(14x + 3a) dr = 5(14“30) 21(2“ ¥y
e
and from (D, -2Dy)z = u = §1-i(2x+3y)3/2 . th? solution
. 1 5/2
2, b 4T L (amedyy
: = 2_11f[(zac»rs.(a-zzci]5 & = - p(de-dn 210

5/2

1
4g) - (23 .
The general solution is z = Puly +2¥) + Poly -45) 210(

2 2oty
Solve (D, ~2Dy) (I + 30y)z = ¢

| : “'3x)u
; = 2x) '+ x¢2(y+2x) + ¢s(3’
The complementary function is z = $x{y+
- ’ 1 __ezx+y_ we obtain

To obtain the particular imtesral denoted by @, -2D) B~ 2D, + 3D,)

from D 2x+y de = Je dx = F3 = e .
. J. M*(arix) J- X483 1 5x+a 1 zx-fy.
¢ x + 3)93,)?3 =& . the SolutlﬂF u = L 5 5
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. 1 2ty . .1 zx+(a-2x)dx 1l e 1 2ty
from (D, -2Dy)v = v = ge the solution v 5_fe sxe - xe .
L X+ ) = it o L2 o o2 my
and from (D ~2D,)z = v = Cxe the solution =z 5fxe dx - ¢ T
| 1 2 2x4y
The general solution is 2z = Pyly +2x) + & Py + 2x) + daly - 3x) + Eﬁx e .
3 z .45"2 Ds)z = (Dx+D)2(Dx-D)z = excn:as2y.
10. solve (D + DDy ~ DDy - Dy y »
The complementary function is z = Py ~x) + 2Pp(y—x) + Dy +x).
Take as a particular integral z = A" cos 2y + Be* sin 2y. Then
D)2 = Ae*cos 2y + Be  sinly, DD} = —4A¢” cos 2y “4Be” sin 2y,
D;Dyz = ~24¢” sin 2y + 2Be” cos 2y, D;z = 8Ae” sin AN =7 8Be” cos 2y.

s

Subistituting in the given differeatial equation, we have \\“

(54 + 10Bye* cos 2y + (5B - 104)e” sin 2y = &” cos 2y, gc\:tﬁat A=1/25 and B = 2/25,

The particular integrai is =z = —215 e” cos 2y + _2\“ex sin 2y, and the general solution

(25

W

is z = Puly-x) + xdy(y-x) + Dyly+x) + 515;:;9:*%:03 2y + 22—5.95'C sin 2y.

&\ ¢
N
N
"
~ 3

11. solve (Dﬁ -2D DBz = DD, - 2Dy)z.,’;l.’eu * xz'y.

The complementary function is ...2\\= Py + Paly + 20).
4 \ 3

A particular integral is givén\by ! e* 4 L xjy' The first term yields
JRe. 0} -20,D, D% ~2D,D,

-1 = le'zzc:.\‘ Writing the second term

(27 ~ 2(2)(0) A
51; ID;\{ ¥y = —12(1+ 2%”. + e’y = %(xsy P2 - %(’33” éxq)’
) 1?&\_&. Dx % Dx D, x
\"\3 A,

we obtain xﬁ_y} ﬁ. The general T 153’ fi.

T solution is z = Py(y) + Poly+ 2) + i° "' w

12. solve (Dﬁ - -me; - BD;)z - 225

Dy + DD, + 2D)(D, - 3D )Nz = sin(x+2y) + ¢

The complementary fumction is gz = Pyly ~x) + Poly—22) + Py(y+3x). A particular in-

tegral is given by 1 singx +2y) + i N eax*‘)"

2
By + Dy} (D - DDy - 603 (D ~3Dy) (D3 + 3D,Dy +2D3)

(Note,

Th;! Separation in the first term is wne of convenience, i,e,, we could have written

(D, +2D,) D;~2D,D, ~3p%)

sin(x +2y). The separation in the second term is necessary, oW

- Ity |
ever, since
' € is part of the term b,(y +3x) of the compiementary function.}
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263
. 1 )
For the first term 1 1
2 2 _s.in(x+2y) = ————— sin{x +2y)

(D"+D3’)(D""Dxny“6”y) o DDy -1r+2+
1 D=0y
o - sin(x +2y) = ——(-Dy) sin(x+2y) = 1
25 p? _[); 25(3) B - (x +2y) [ cos (x +2y).
For the second term: 1 S5 1 P

2
(D =3Dy) (B +3D,Dy +2D1) D-3D, 8+9+2

S 1 mey 1 ey
20 D, - Dy 20 )

The gencral solution is z = @y(y-2) + dply-20) + aly+3x) - 3 costxedy) + —xeM,
B {\ %

A
N 3

13. selve (D -5, Dy - GDy)z = cos{x-y) + Pl xyz + yi. i:‘;
The reduced equation is that of Problem 12, A particular 1ntégsal i given by
1 1N \
. 5 cos{x~y) + (x +xy +y)
(Dx+Dy)(Dx—DxDJ,- GDJ,) o D- TQny- SD
(Note Lhat cos{x-y) is part of the complemenmw\fmctlan. hence, the corresponding fac-
A\,
tor (b, + Ny) must be treated separately.} O '
RN
. o\ 1
For the first term: ! s - cos(r-¥) < 7 cos(x-y).  We must

(D, +Dy)(D D,,py“ 6D,)

- . 1
solve (D, +Du = }.cos(x =Y, Dh}“lning g = .I._J‘cqs[x—(a.-r_x]]dx = EICOS(—G) dx
7 AN ¢ :

’ ::.‘ o .l cos(-e) = 1 cos(x-y)
< 4 4
x,\’ 1 2 2 3
\WV 2 A + +
For the second,‘\sgrm: 5 3 (12+x.7 +y) = 2 Di (a +xy )
A\ Dx—TDny—GDy D?c(l - ’1’-% —6—%)
. \ . B, X
S 8
3 1 -
l(1+7&+6—3’-)(x2+xy2+y5} - Ly oty +-E(2x+6y)+D5(6)1
3 2 D5 Dx x
D, D, Dy %
1 v 2 5.3
1 5 - + XY .
1 36 _ B b, i+t =¥
—;(12+xy2+y5) + j;(2x+6y) + = 12*’ * GDx ( _ 24 6
D D,
x x

The general solution is -
5.6, Zx7(1+2ly)
= Py ly—x) + Py —22) + Qaly +3x) -x eos(x -y + ﬁx t 5

1 v 2 15373
xy -
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SUPPLEMENTARY PROBLEMS

Solve each of the following equations.

4. @f - 8DD, +15D)z = 0. Ans. 2 = (¥ +3%) + Py(y + 5x)
15, (D; - 20D, - D;)z = 0. Ans. 2 = P [y +x(1+vV2)] + Poly + x (1= vDY]
16. @ - 4D, +4D;)z = Q. Ans, 2z = b (y +2x) + xd(y +2x)
17. (D; +2D:Dy —DxD; - 2D;)z = 0. Ans. 2z =y rx) + Doy —x) + Pyly —2x)
8. @D + BB = 0. Ans. 2 = Bu(y) + 1D, (0) + By (x) 1 SDyx) + Bo(y-x)
i \

2 2., _  x=Y I oyey

18. @ + 5D, D, + SDy)z =g 7, Ans, z = P (y-22) + gb,\r 3x) + 3¢
K

20. (Di + Dz)z = 2292, A\

Ans. z =Py +ix) + Py =ix) + i[P(y +ix) - d),‘,(y-b.x]] + —(15x y-z%)

\\ "\

2. @) - 307D, + 40Dz = 7%, Ans. dz‘{y D v By 420 ¢ xdby(y s 2000 g

s
®

3 2 2 SN
22. 0 + 20D, ~ BD, - 2D;)z = (r+2)e. AnS. 2 =Py ) ¢ Poly—x) ¢ Boly~21) + ye©
5 2 Q
2. 0 - 30D, - DD + 12Dz = sin(yPRo .
AN
Ans, z = ¢i(y-2z) + qbg{yj:m + Paly+3x) + %x sin(y +2x)

2O

3 3
24. SDD +2D )z = Vx ¥ ,zy Ans, z =iy +x) + xdy(y+x) + dyly-2x) + _..’g'(x»,zy)?/z
523

25. (Dx + Dny - ﬁDnylz\c x % y .

Ans, z "{5;_(3') +qb2(y+2x) + y(y~32) + _1_2_5_ 5 _ lizx'ly + ,l_x’)ye
6

3
26. @) - 49ny + 59ny - 2,9;): - A S B S
Anse 2 =di(yexn) + xd(yax) + Poly+2) - nale?™F _ Ly e
36

5 .
2T W -2D)e = 2P 4 3xYy,

Anse 2 =iy + xdy(y) + By(ye ) + e o L0y, Lo
4 20 60
- 5 - 2 5
28 &y 31)3,51}3r - 2Dy)z = cos(x +2y) — ey(B +2x),

Ans, =
sz =gy (y-x) + P, (y-x) + Daly + 2x) + 2% sin¢z + 2y) + ze”



CHAPTER 32

Non-homogenous Linear Equations with Constant Coefficients

A NON-HOMOGENEOUS LINEAR partial differential equation with constant coefficients
such as

f(Dx,Dy)z - (D:_D;+3D"+Dy+2)z = (%'I-Dy'\’l)(px"Dy +2)z = xz-i-x]’

is called reducible, since the left member can be resolved imto factors each
of which is of the first degree in B, Dy, while

£(D,.D,)z = (DD, + 20})z = D, (B, + 20})z = cos(x-g‘ygg

<NW)

which cannot be so resolved, is called irreducible. N

x W
L 3
~
N
%G

REDUCTBLE NON-HOMOGENEOUS EQUATIONS. Consider: the redu@ii} non-hologeneous equa-
tion _ o _
1) f(b,, D)z = (&b + b Dy + cy)(amDy + bzprc;) (85D, + baBy + cn)z = 0,
where the a;,b;,c; are constants. A:}y{:;oiution of
2) (a,-,nx‘j,b‘;;ii; +e;yz =0

js a solution of 1). From Proble;ﬁ 5, Chapter 29, the general solution of ) is

3) z é?ciﬁai ‘f’(aiY"bi’f) ' a; #0,
or ) . B} . -
! NS z = .~3_""£:"/b‘a ¢(aiy—b£x) , by 0,
3 Ko .
“ Thus, if no two factors

»‘." . R N - . ) - E t

i “3Ytrary functions of thelr argument. f 1

‘;;ﬂll)d)a?gd llf:n\\egﬁiyrze:endent (that is, 1f no factor 18 s;) ?i::. :131’11;;3;1? igfs ang.hi;g
the genex'\a:f‘ solution of 1) consists of the sum of o &r

types\'sa; .and 37).

EXAMPLE 1. Solve (2Bc+Dy+d) (D -3Dy + 2= = O

' ' -8 . the first term
e Y y-n t € by (y + 320 Note that

is 2
The general sclution u/h o (y +35).

-2 econd by ¢
on the right may be replaced by € fy 2y —2) and the 8

5) (D, +2Dy) (Dx-2)(Dy+2)z = 0.

-2
o) + e Pal) * € Y b (2)-
See also problems 1-2.

EXAMPLE 2. Soive (2D +3Dy-
85:‘/!@(2}"-&) + ¢2(y_

The general solution is 2

it _.

k &
4) £(D,. D))z = (a:li? by Dyt ca) (Bre1
ctors are 1inearly de

< (ayDy + baDy t €T = 0,
cated, the

D, + by Dy + Cpar )’
pendent except s indi
where no two of the n fa

265
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part of the general solution corresponding to the k repeated factors is

B'Cix/01[¢! (31)’— bix) + x¢2(aiy blx) + e ¢ (al}’ b,x)}

2
EXAMPLE 3. Solve (2D +D,+5)(B,-2D,+1)yz = 0
The general solution is z = e “Py(2y=%) + e [Paly +2x) + xdg(y +20)].
See also Problenm 3,
THE GENERAL SOLUTION OF
5) f(D,,D))z = (a,B, + bD, + ¢} (a.D + byDy + o)+ (agh + bpDy + cp)z = F(x,y)

is the sum of the general solution of 1), (now called the compsl@amontary func-
tion of 5)), and a particular integral of 5},

1 . W
8) zZ = —— F(x,y). PN Y
f(Dx D x'\\ ’
A€
The general procedure for evaluating ) as wellvas short methods applica-

ble to particular forms of F(x,y) are those oa\t‘he previous chapter,

EXAMPLE 4. Solve f(D,.Dy)z

2 g\;‘: 2
(D, -Dxl?y + 2D, —4Dy)z
(D, ~2D (D +D +2)r = yex + aze 7,

The complementary function is z = <£>1(3r+2x) + ey (y-x).

To evalunate --—1— e = \'\ 1

¥ CJ—
fB,.D,) ¢ {t),xlzoy)(ox +D, +2)

yex, we first solve (O, + Dy + 2)u =yex

. de ™\
vhose auxiliary system is N\ E?'. = L - We obtain y = x+a readily and the equa-
O o 1 yex—- 2u

y d _dr x . 2 .

ion = — Q”’e_ + 2u = ye© = (zx+a)e”, This linear equation has ¢ as integrating

ye¥_2u 1o\ dx
.'\
factor; hemejfﬁué” = fx+e)ede = %xeix__l_ LEIN _;_uax B WO C N O %(y _xye*
3 3 9

and u = }.yex 1 x.
3

We then solve 0, - 2Dy)z = u =

tegral (see Problem 6, Chapter 31)
1
z = I[—(G—Zx}ex- .l.ex]dx = laex 2 x 2 =x 1 «
3 9 3 3
= '1‘()'+2x)ex -~ -2-xex p 2% o 1 5, x
3 3 g .

To evaluate 1 -y - L
{d.-20)¢D. +D +2}(3"“’ ), we solve (Dx+Dy+ 2)u = 3xe whose auxi

; .oodx g du du
ia - &y
ry system is 11 = Then y =x +a, and from — . = él or
3xe " 2u 4 1

3xe " - 2u
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2y ) -
ue = = 3I(y‘-“)ey dy =.3(y~1—ﬂ)ey = S(x—l)ey and

Y = 3gy-we,
3(x- l)e'y, the required particular

93 + 2u = 3xe
dy
u = 3(x—1)e_y.

Solving in turn (D -2Dy)z = u
-342x% 3, -o+ex 3 -as2x, 3 3. -

dr = Sixe P N YU S
3¢ 2° ) * 3
¥

integral is z = 8[(x=D)e
[he general solution is z = @ -2 1 5 x 3 -
B (Y +20) te  Goly-x) + E(y + §)e + -2~(x - E)e

0F - DDy - 2D% + 6D, - 9Dy + 5)7
2oty xt+¥

Solve  f(Dg.Dy)z
(D;C+Dy+5)(Igc—2Dy+1')z = e + €

EXAMPLE 2.

The complementary function is z = e-5x4>1(y -x) + e'x¢,{y'+2x). ~
1 corresponding to the first term of F(x,¥), fe\)se

L by £ 0O T
f(an b) ’ . ’,‘}' -
’xt\i\ ¢ 2y . le?x+y

f(DxlDy)
1 2y | 4
€ 4“23-"32;+12—9+5e 8

eﬂy ijs a part

For the pﬂ.rticulﬁ-l 1l‘ltegla
1 Gx+by'

and obtain 7 2
Dx—DxD),—2Dy+6Dx—9Dy+5. .

\\,

is means that

%47 ye note thot fele\¥ 0. T
AY

(To see this, htake b, Ly + 2x)

€
. L Yy + ) then

in evaluating ————T
fD Dy

of the complementary function,
e Choly +22) = e [e:'H:z’c + Pty .+2x)"~:"c“ J v ey +2x).) W write
LN\
— i ex+y = ___—-—1 — I\ - ex."j‘I = -1-_,_._-——'—1 ex+y = %xe’”y.
f DDy D, -2D, +& DD, + B 7D, -2D, +1
..::.‘ . . . . _. F ) 1 2x+y 1 x+y
L 4 - g = ~xe¢
The general solutiom™s” z = € 55'G<i>1{y ~x) t € Paly +2x) + 88 + 1::
\i:"{’ gee also Problems 4-5.
O
<’
The ﬁSg:wof the formula
' 4 .
1 y = V(x,5)
1 ax+bdy  _ ax+by _ 3 ——V. ¥,
n Ve = € £f(D+a D +b)
'y
£(0,.0,) O
is illustrated below.
: 2 2x 4y
2 _ nZm -z = (= + 2y)e .
EXAMPLE 6. Solve @+ apiDy - 203t~ DD, + 3Dy
2 lar in-
—3x). A particu
The complementary function is 2z = HN ¥ xPa ¥y * € baly = 3% 2
1 2 2ty L g 5 1 (x° +2¥)
(" +20¢ D+ 2 D+ 3D+
du

E = Eil = — -
3 x2+2y"3“

tegral is z = 3
Dx(Dx+3Dy-2)
1

- the guxiliary systed is
Setting (D, + 3Dy * 3y = 3 +2
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du dx du _ .2
Then "y = 3z+a, and from T-——--—=-1— or E+3u = x +2y, we have
x +2y-3u
2 12 2 18 2
4 2 3x . w12 16 16 2 d = St sy 2
we” = [(x +&x+2a)e dx e (3x+9: 27+3t‘.|'.) and u & 3 27+3y.

2
Next, setting (I, +2)» = u and making use of the integrating factor ™, y being re-

2% 2x1 2 2 16§ 2 _ 12 5 17 1 . o
garded as a constant, ve = fe (Ex - -91 =57 + §y)dx = (Ex - ﬁx ~ o8 + "53‘)"
12 5 17 1
T - - — -— o - .
amd v o= 3T - 5" 108 37
Finally, setting ([}, + 2)v = v, we have
s &\
2% 2¢,1 2 B 17 1 1 2 2 7 &\ 2x
= X = X = e ¥ = = (—X ==yt — 4
O L S o (R LU Ll L TN L
12 2 T 1 O
= - - —_—t =¥, . N
S v T 4
o ?
2%+ Y &
Then z =we and the general solution is A\ N
2x 1 2 2" 7 1 2x 4y
z = + + 3y - + (—=x > - — - .
H(¥) + xb(y) + e Pg(3y-x) (12’:5{\\, S5t t a0
NS
PA\\ See also Problems 8-7.

o
A
™ ¢
N

N

IRREDUCIBLE EQUATIONS WITH CONSTANT CORFFICIENTS. Consider the linear equation
with constant coefficients N\

3

.'\\
8) | £, D)z = 0.
(&S

. ¥ _= 7
Since Dny(ce““bJ') = cg’.’ﬁ’e“’””, where a, b,c are constants, the result of
substituting N

. x;\‘“
9) . \E:’:“ z = ceaxq-by

N
. . WN\ax + b
in 8) is cf(ag't?n:},e **™ =0. Thus, 9) is a solution of 8) provided

10) V - f(a,b) = 0,
\;ith ¢ arbitrary. Now for any chosen value of a (or b) one or more values of
{(or 2) are

obtained by means of 10). Thus, there exist infinitely many pairs
of numbersg {a;, b;) satisfying 10). Moreover,

w0
1y z = 3 c e¥thy

i=1

where f(a, b;,) = 0,
is a solution of 8.

If
{(Dx,Dy)z = (Dy+ hDy + k) g(D,,, D)z,

then any pair (a, b) for which a +hb +k =0 sat isf

i i i 1 such
pairs (a;, &,) = ('-hb,-,-—k,bi). By 11). ies 10). Consider al

zZ =

[

®
Z;l cie'-(hb,;+k)x+biy = ok z ciebi(y—hx)
- i=1



NON-HOMOGENEQUS LINEAR, CONSTANT COEFFICIENTS 269

is a solution of 8) corresponding to the Linear factor (B, + hDy +k) of £(D, b,

This is, of course, e j‘m‘;b(y—-hx), ¢ arbitrary, used above. Thus. if £(D,. D)
has no linear factor, 11) will be called the solution of 8): however 4
f(px,l)y): has m<n l}near factors, we shall write part of the solhtion ianlv—
ing arblt_rary functions (corresponding to the linear: factors) and the re-
mainder involving arbitrary constants, =

EXAMPLE 7. Bolve £, D)z - @),Dxmy)z = 0.

The equation is irreducible. Here f(a,b) = diarh - 0 so that for any a = a;, b; =
-a;{a; +1). Thus the solution is

@ @
ayxe by o= (a;+1
z = z cje b Y = E c;e (0 )}'. ¥ith ¢; and g; arbitrary constants,
i=1 i=1 A\
EXAMPLE 8. Solve (B +2B)(D-2D,+L@-Bz =0 ()

Corresponding to the linear factors we have ¢, (y-2x) wq'g$9(y+2x) respectively,
For the irreducible factor ng«-D; we have a-b° =80F o = b

The required solution is V)

@0 2 {
bxs by O .
d o= Py-2n) + e Tyy ) ¢ 2 c e ¥ 4 'Q;\ “With ¢, and’b, arbitrary constants.

i=1

4
N/

In cbtaining a particular integrd}_”af £(D,,D,)z = F(x,y), all procedures

used heretofore are available. ™

\ 2 2x 439
EXAMPLE 9. Solve f(&,%\)zz\z (B,~Dypz =& .
Q™

2
X : . § byx + b5y
From Example 8, the complementary function is  z = oy € .

& t=1
17\ 1 aesy _ L mvsy L mosy
For the parti\uﬁ;l" integral: . = 2 T
‘\ No/ D --D - (3)
NS x "y
:,\.j' i bxeby L 243y
The réQuired solution is z = 2 cp € 7

See also Problems 8-11.

i i into a

THE CAUCHY (ORDINARY) DIFFERENTIAL EQUATION F(xD)y = F(x) flihet‘;ﬁft‘;‘;ﬁion o g
linear equation with constant coefficients hymanst[i)al equations is an equa-
(see Chapter 17). The analogue in fferen

tion of the form

partial di

= constant,
f(X.D }’D )z = 2 Cfs xfysD;D;z = F(Xr Y): crs co
w o ¥ly hod

which is redluced to a linear partial differential equation with constant co~
efficients by the substitution
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y, 2
EXAMPLE 10. Solve (Do + 2eyDD, - D)z = &' /¥ .

2.2
The substitution x = e, y = ev' xlz =Dyz, yD),z =Dyz, Dz = D (D, -1)e,
2.2 ion i
xyDD, = DD,z ¥Dz = D@, -1z transforms the given equation into

Au-2v
e

(b,d,-1 +2DD -DJz = DO, +2D -2z -

2 I zue2u
whose solution is 2z = @ (v) + e t‘qf;z(u_zu) - 583

Thus, the general solution (expressed in the original variables) is

pv

3

_ 2 ¥ l f—. - 2 _'_}"_ 1 =x
2= u(lny) + Tdp(ln ) ~ oo or R R A
x hi x ¥
O
See also)’rohlemt; 12-13.
S
SOLVED PROBLEMS A
R
R
REDUCIBLE EQUATIONS. AN
2 7 o
1. Solve (B, - Dy +3D, ~ 38Dz = (D, - DD, + D&t\jsiz = Q.
x'\\.

The general solution 1s z = Py (¥ +2) + e oty —x).
N

<N
D
"
> 3

. 2. Solve De(2D, - Dy + 13D, + 2Dy - 1)z ‘ =:Q

N\
The general solution is z = qbi(y)x\} eyq&,(Zy +x) + e” Py (y —2x).
2 &)

\
2 O
3. solve (2D, + 3Dy = 1) (D, —\3Dy + 3)52 = 0. The general solution is
z = e [‘1’1(2]-{3{{}*“ 2, (2y-3x)] + e’ {ha(y +32) + ybe(y+32) + yzq‘Jﬁ(y+3x)].

N
2.3
4. solve (2D,CDJi T“Q:y,-SDy)z = Dy(2D,+Dy-3)z = 3 cos(3x-2y).

The complémehtary function is z = Br(x) + & $,{2y —x). A particular integral is

3
3 cos(8x-2y) = c = 3
P 03{3x - 2y) = 3x -2
ZDny+Dy-3Dy 2(6)-4—31}), 8‘3Dy cos (3x - 2y)

3(8+3Dy)
2187 9y _ . 3 3
o1 - QD; Cos(3x-2y) = —100(8+3Dy) cos(3x-2y) = 5 [4 cos(3x-2y) + 3 sin(3x- 2y}

Th - s =
¢ general solution is z = ¢, (x) + 853’%(2),_” N E% {4 cos(ax-2y) + 3 sin(3x-2n].

.S
B. Solve wax+Dy"1)(Dx+3Dy"2)z = xz_‘!-x3’+2y2-

The compiementary fumction is 2 = dyyy + & Paly~-x) + e aty - 3x)
a - -

A particular integra] is denoted by z = 1

2 4
= (x" — 4xy + 2y ).
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To evaluate it, consider —1(x2_4xy+2y2)- Y 1
Dx+3ﬂy—2 _1+%(Dx+3Dy)

G2 - axy + 25

© 3[-1 = 3B+ 3Dy) — AB+3DY = e (80~ dry + 2
2
= 3l-(x —4xy+2y2) - (=5x+4y) - /2] = — 30~ dxy + 29 < Bx + 4y + /2.
-3

. 2
consider next ————(x-dxy+ 2y2-5x+ dy+7/2) = % A-—l-——(xz—th:y + 2y2 -5z +4y+'1/2)
+Dy-1 1-(Dy+ Dy)

= 5[l +(Dx +Dy}+(Dx+Dy)2 + “'](x2—4xy+2y2—5x+_4y+'7/2} = %(x2—41y+2y2—’7x+4y+£).

Finally, 1 = Z(l-tryrBi-Tarayrd) = 40 /3 -2y + uy - Tx /2 +dxy +/2)e
D, ) ’ {\
N\
The general solution is A\
1 2 g N2
1 = By + e” baly~%) + e% ba(y-38x) + ﬁ(2x5—12a: y+12§y}—2‘lx + 24xy +32).
ON
~~~x\\'
TYPE: 1 S5y Vix,¥). N
£(D,,D,) O
NS
x+§H§2

6. solve (D + Dy—l)(Dx+Dy—3}(Dx+Dy}Z = .g,’; 27 cos(2x-¥).

g

The complementery fuactiom is % =, 45 (3/ -x) + e by -x) + P (y - %}

3

L\ 1 x4yt

\ € cos(2z - ¥)
s integral, ‘;r/

For the particular £ . \\ D, +D, —1)(Dx+Dy-—3}(Dx+Dy)

x+y 1 &2 cos(2x-¥)

e

I . & SR
(D, + Dy +1)(Dx w L 1y(D+Dy+2)

PRLe, . weyrz 1 cos(ax-y)
ex+y+2 § 1 cos(2x-y) = ~ ¥ D +D +2

——5<*”/_'
(Dx+39ny Dy 1) (Dt Dy + 2)

1 xty+? -2 os(Zx-y).
I _&Xn__‘?x_f)’__————cos(zﬂt-yl T (D +Dy=2) ©
D2 +2D,Dy + Dy~ &

The general gplution is

i

_ L A fsinex -y + 2 cos(2x— ¥
10 .

1 8x+}'+2 {sin(h-y} + 2 005(23'}()]'

z = & P ly-x) ¥ eF Gply-2) ¥ $sy-®) T 1o

SR ay0)e

{» Solve Dx(Dx—2Dy}(Dx+Dy)z = . )
- pyy) + Pty r I T by (y -2

The complementary functien is

For the particular jntegral ,
£42Y 1 (x+4y’), we first

" /—
______l___#——- ex+2)’(x2+4y y = € By D (Dx"zny_ )] {Dx+Dy+ K}
D, (D, —2D,) (D + Dy
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2,2 1 1 2+ 4y%)
find # = (" +4y) = 3 ¥
D +D,+3 + %{Dx+Dy)
1 1 i N T
= {1 3@ Dy ¢ gD+ Dy 1" +4y)
12 2 2 10, . Lig®iaey’-6x-24y+1
- = e — —_— =  mma .- )’ + 0)'
= 3[x + 4y 3(x+4y) + 9] T Y
1 1 1 2
then v = —--—-*—-—1 u = —% 1 1 u = —5[1— 5(2Dy‘Dx) + 5(2[)},—0:(} - "']u
b, -2D,-3 1+3@D, =)
= - 8—11(9x2+ 36y° - T2y + 58),
’\
1 2 , 2\3‘
and finally, z = v o= (laD 4Dy teeedy = -—~—(9x +36y - 18x - 72%+ 76).
D +1 D)
'S\
The general solution is A\ ~
2= Gy ¢ Py +2) + Be(y-1) - ——(9: + 36y -mx.\\vzywsye 2,
TYPE: IRREDUCIBLE EQUATIONS. e ’
o\\'
2 o\ ¢
8 Solve  fDDyz = By=Dyz = &7, &
\")d
. B R b-x+b1-'y
The complementary function is z = 2 tye from Example 9,
R
The short method for evaluating tm{\partleular integral DxlD ; ¢ *? cannot be used, since
\ fiDe Dy
fla,b) = f(1,1) = 0. We shall uéafthe method of undetermined coefficients, assuming the par-

9.

W
ticular integral to be of thg,form z = Axe” ™ & Byex+y

“\ W ) +
Now D,z = (4 +A"+B}i x+y 2 = (Ax +28+By)ex+y and (I, Dz)z = (A—2B}e“} = e
hence 4 -28 = LR ~Tak1ng A =1, B=0, we have as particular integral z = xe  '°; takingA=0,

B=-%, we Ke}f= —éye J‘; and so on, Choosing the first, the required solution is

Q Pxen
'y Y ¥
z = 261-’8 t * + xex+y.
i=1
2 2
Solve (2D —Dy +Dyz = xz—y.
x ax+b
The complementary function iz z 2 y' 2a? - b:g +a; = 0.
i=1
The particular integral L (xz_. s oL _Hl_(x -y}
™ _ 2 2
2D D +D, Dy I_Dx+2Dx
2
Dy
2 2 2
=...1_[1 +w+wx+20x) 2 1 2 2x + 4 2
B g ey s Sy B 2
y ] 'y Dy b, Dby
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1 2 2 2 "
= - U myrxy +2y +y"/12) - - %x'zyz . -1-y5 - ixy'i ~ iyu 1 6
Djr 6 -1z [ 35{]-? -
w - 'S :
The required solution is 2z = Ec,ea"xi WA Y 1451 1 % 14 1 ¢
1

+=1 360

R BT A

10, Find a particular integral of (Dx+Dy)(Dx“Dy“Dy)z = sin(2e+y),

A particular integral is given by

1 1
2 5 Sin(2e+ y) = 3 o sin(2x+y)
W + D), - Dy -D) (~4+D,) (D~ Dy + 1) ’
1 ' 1 ) .
= 2 - 810(2%+y) = ~—— o min(2x+y) LN
DD, ~ D}~ 4B, + 5D, - 4 5Dy - 4D, - 5 N\
5Dy—4D, + )
; Dy- 4Dy 52 sin{2x+y) = - 512 (5 sin(2x+y) - 3 cos{gx‘tjr)].
25 Dy - 4ODny +160 - 25 _ ) \.
7 $ ~\
The method of undetermined coefficients with z = A sm(gx;s(w B cos(2x +y) may also be
used here, v

. o 4 +4
11. Find a particular integral of (1;5—21)3,+5) (D;+D?\\\a")z = Yy sin(x = 3¥}.

: - ’g::::‘_ — e singx-2)
(D, -2y + 5.'):{@;"' D, +3)

A particular integral is

(3% 9y . 1 x..t;é‘ﬁl(l—%) L T (D — Hﬁ;x”) s gin(x - 2y)
D, -2Dy y(b, +6b, +Dy’+'\my e A 'y
XY - 12{':, S, sin(x-2y) = % i :;ﬁx-:h sin(x - 2y)
6D, ~11D.D, mz{qw 150, -30D, | b4
_ 1 sxewy 3%\-5133, +4 sing -2 = - ‘ﬁlﬁg H4Y (3p - 6D, + 4) sinlz-2)
° 93361 D, + 36D - 16
= - EIEE >$}“y {15 cos{x -2y} + 4 sin(x - 2y3l.

TYPE: f(xDx :YDy)z = 0. .
¢ or (xiyzﬂiﬂf - _12.'13 D,ny’ )z = 0
2nipk, - - IS SER

The substitution x = % ¥ %€ 2y 00yz = By _1)‘?4_]1:‘::;;,:0
2 2.3 _ -z
’ JVBDny # 7 BB DRy Uf:;ﬂﬂ ?1) D, ~ 1) Dy —-Dy)z = 0. The required solution is

t At ¢ g (v +1t) or, in the original varishles,
byivy + dyuy + e Pa(w) + € By (u) +

z = ¢ (lny) + $(lnz) + Py (10 ¥) ¥ y¢'4(1n)x) + b
Yy + ‘}Ja(x) + zPs(y) + i (x) + s (27}

12. soive  @DlD? - yDDz =

transforms the given e

(3]
|

(1a zy)
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2
- 18, Solve (leﬁ-ﬂlyzD; -4yDy - Dz = % 3} lny,

The substitution x =eu. _y=equ transforms the given equation into

2 2
[D, D, -1) = 4D,(D, - 1) - 4D, -t]z = (D~ 4D, - D, - Dz =

2u+ 3
ve .

. : 1 2u+3y
A particular integral of this equation is given by -3 ve
D,-4D,-D, -1

|1 =

D, + 2 — 40y 13 - B, + D) - 1 DX —ap? + 3D, - 24D, - 35

2u+ 3y 1
L2543V 1 Poad v,

Bys inspection, & solution of (Dz—tiDj +3D,~24D,-35w = v is found o be w = 1,

35 (35)2

1 2
L 2Ut3Y

Hence, the particular integral is z = - (351 - 24).

(35)° D\
The required solution of the given differential equation is
aiu+b£u 1 82“*'3”

c.e - m——
o 1225

Ms

351 =24 or, i '\L'i'le priginal variables,
( ) M

€x

a; b 1 v

2= eriyt o —— 2y (35Iny-20), gi\=4b; - g - 1:0.
2 1225 A

£

=™

y
O
o\

3
N/
%
o ¢
g

SUPPLEMEN'];@R:Y PROBLEMS
O\
Solve each of the following equa.t:i.ojs@.
¢ L\
14. (Dx+Dy+1)(Dx-ZDy-—1)z = 0. )\ N Ans, z

15. @, +2D, -3y, + D, - 1)2,5.0.

N W/
N

2 ol
16 @D +D, +1) (D, +30B-3D )z = 0.

Y

2 O
17. ()I:nnyJfI:IJr (D;}:Dy-z)z =0

€ Py (y—2) + €y +2x)

Ans, z

estb;(y-zx) + gx¢2(y—x)

Ans, =z

B () + P2y —x) + € byly-30)

Ans,

™~

= Pr(x) + Pp(y—x) + 7 by (y +2)
18 (D +20,) (D, +2D, + (B, +2D, + 2’z = 0,

Ans. 2 =y (y~20) + e Pu(y-21) + ) [Boly -2x0) + ybaly - 20)]

9. @+ Dy, + D,-2)z = sin(x + 2y),
_ 2%
Ans, z =g fy~z) + e .qbz{y-x) + Ii_'t {6 cos{x+2y) - 9 sin(x+ 2y)]
20. Dy +Dy -1y Dy +2Dy +2)z = XY + ¥(l=2x)

x -
Ans, z =¢ Dy (y—x) + ¢ J'<}f>2(3,'--2:|;) + Xy + % + L eaxny

T8
2 BDD 4D -1z = &y o

%
.

1
Ans, 2 = ¢ ¢ (y) + Edyly -2y + -21_1896 - 3



22

26.

27.

30.

31.

32
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3 2 2 . 3
(o, "Dny -D, *Dny}I = (x+2)/x. Ans, z = qbl(_y) + ¢_2_(y+x) + exf;ba(y—x) +1n %
. E
(3Dx1)}.—20y—Dy)z = cos(3y + 2x). Ans. 2= dy(x) + R B, (By +2%) — % sin3y + 22)
2 2 2 -3 ) a;x 4+
@2+ DDy =Dy 4D =Dz = €7 Y, s 12 2’ i _%e%—iy’ R ab-Bra-b, = 0

2
@l 20+ D -z = 36" sin@ ),
a.x +by ' '
2 e - Jfcus(ac+y), Sa:-zb:+a1._—1 =0
@F vanblo2hy vz = & costx 2
a;x+b; 1 ' '
Ans. £ = 2'?4;3 #A - ﬁexw cos{x+ 2y), - a§+2a1-’bi_— 2b£+3 =0
2 -2x, 2 2 e
(. *.”t.!'}._'r +I_)I+Dy +1yz = & x(x +2y7). \\\

a.xth;
Ans, 1z = 2"1’," Cahl SO 211 (9:: +13y +13a:+12y+15"}. ﬂ+ﬂbf+0+b-+1‘0

{D:I')v + J’J; -2z = e?” cos 3x + ¢ sin 2y \\
x4 b . 2 2
Ans, z = 2 ce it L ¢ cos s - 1 F(cos 2y~133 sin 2y), b+ -2=0
t 16 20 \
e\
Ans. z Xtﬁq_\(&n Ay + y5¢>2(111 x) = dalay) vY ‘Pe(x)

2.2
(I_\"Dxf)}r -y Dy —3xD, + 2yDy)z =0 \v
W

2 e
(17 ~2uyD,D, 3Dy # 2By =3yDy) = y:sm(ln ).

&N

Ans. 1 % ¢1(; y) + gbg(y/xq o y[a 006(111 £y + 7 sin(ln x Y

AN

2 2
(x D +xyD D, -2y D —-xD, egv\B\ Ans, z = ¢1(y,fx )y +a PplaEy)
5 D -xyD Dy -2y Dy t?(l}x 2yDy}z = Ingy/sy - /2.

Ans \r: Do, (y) + dyly/m) + ¥(D %) Iny + #10% iny

A 5
5+y

R\

(xy ﬂ)\.—"}yDD-xD +yD)-z o

1 x" — y
Ans. 2 = x by (y) + 7Pl r Pelxy) = g5y



CHAPTER 33

Partial Differential Equations of Order Two
with Variable Coefficients

THE MOST GENERAI. LINEAR PARTIAL DIFFERENTIAL EQUATION of order two in two indepen-
dent variables has the form

1) Rr + Ss + Tt +Pp +Qg +Zz =F

where R,S,T,P,0,2,F are functions of x and y only and not all R, S,T are zero,

pefore considering the general equation, a number of special types will be

treated. 4
a (? .\\\
1YPE I. O
¥z "iw}
2&) . r = —_— = F/R = Fi(x:Y) '\N';',
u? D
RS
2b) s = 22 _ps = Rx )"}
ax dy 2’:'{’\’K
2 \\\‘;\:
2y t = 3_2 = KT = “(x,y).
ay PR

These are reducible equations with édﬁétant coefficients (Chapter 323, but a
more direct method of selving w'i.J’\I\\be used here.

¢ & \/
EXAMPLE 1. Solve s = x =yl

L >

2 N

. 9%z < 2
Integrating s = —-— = £M\¥Y with £ = 22, - 4y i .
'aray“,t\xwy with respecttoy, p = 1y + P(x},  arbitrary
Integrating this r&ﬁl’.’ion with respect to x, z = éxzy - ‘Exyz + Dy(xy + So(¥)
d o)
where Enbl(x) fi{g} and ¢,(y) ere arbitrary functions,
VUV
TYPE II.
3a) Re+Pp = R v pp = F
ox
3b) Ss+Pp = S® pp = F
dy
3c) Ss+Qq=sE+Qq:F
. ox
3d) ' Tt + Qg =Tﬁ+oq:p_
Sy

These are essentially line ; . .
: ; ar ordinary differentia i e in
which p (or q) is the dependent varisble. 1 equations of order on

276
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EXAMPLE 2. Solve %r+2p = (9x+6)e " 22

Considering p as the dependent variable, x as the indepéndent varieble, and y as ¢
. " ¢ on=-

op
stant, the cquation is xZX 4+ 2p = %42y i i
: 2p = (9% + 6)e for which x is an inteprating factor,

Integrating 12 g-—i + 2xp = (gx2+&)ek+23’ we have

2.

z 0 1 .2 Ix42y 1 3x+2y D, D
1P T (0 Bne 3¢ (l—§+-§-----)(9x2+ﬁx)
_ 2 cé2y 3z 1
= 3xe s ey or p=F gL
1 ax € + xz ‘1’1(3’)-
. 3x + 2y 1 :
Phen ¢ - e — =gy (¥ + ¢(y) is the required solution. "\
* N
TYPE 111. o o
4:) Rr +8s +Pp = F or B EE + :S\»“' = F-Pp
9x ’\\\ay
a9
4b S5s + Tt + = F or S—='+T—= = F-0Qg
) 0q \%X oy

O\

\ 3

These are linear partial differentia:l‘\éduations of order one with p (or g}
as dependent variable and x,y as..i.x}ﬁependent variables.

".:::“ 2 op L L 2 )
- - oL 4ey? or 2= -y — = &xy°-2p.
FXAMPLE 3. Solve 2xr J’f~+\2p y‘ o™ Jay

N dx _ dy dp

{«ing the method of Lazr‘é{lﬁé (Chapter 29), the aui]._ia.ry.system.is ; ) :;« ) -Ixyz- 2p )

A

O . . 2
From the first two(Pdtlos, we obtain readily xy- =@

p 2. 2 o
Ry insllectiogn}%“(%) + 2py(-y) -~ ¥ (&Y -2p) = 0_‘ ';‘hus, :
AN 2 d p
\ ydp-2py0Y . d 5 - 2¢ = b
2>-“d{{~; opy dy -y dp = 0 of Zdr- T O ¥y
:n \ '3 y .

Y :
\/ 2
The general solution 1s p/yz -2 = Py Then

A

2
where 2 d:u(xyz) =y ley )
"4

2
p - o ay? e yleay’) and 27 A2y% + utay) + B0
A

TYPE IV, . ) _

pOZ ¢+ P 2 47z = F
5a) e + Pp + 2z = F or o ox -

9z + o % + 7z = F.

5b) Tt + Qg + 2z = F or T o y

i two with
i i ia} equations of ox_'der
Pt dlfferes:;zndent varia_ble in 5b).

Tt ially linear 0 ;i
ese are essentially 5a) and y as In

x a3 independent variable in
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2 Jx 4 2%
EXAMPLE 4. Solve ¢t - 2xq +2°z = (x-2)¢ .

2- 2 2 Bx+ 2y
The equation may be written as (J_’)Jr - 2ny +x )z = (Dy—x) z = (x-2)e .

x T .
The complementary function is z = e”@_(x) + xe yéz(x} and a particular integral is

x=2 +2 e5x+2y
- x
S - (x—2)e5x+2y ey P
@, -y’ (2-x) %2
¥
e}x{‘zy
The required solution is 2z = exy¢1(x) + xexyr;bQ(x} + 3 .
See also Problems 1-8,
LAPLACE’S TRANSFORMATION, This transformation on A\
AN
1 Rr + 5§ + Tt + Pp + Qg + Zz = G(u, V) A

- -

7 Py

consists of changing from the independent variables x,y to‘a‘.r’iei&r set u,v, where

ON
6) u=u(x,y), v=vixy) (¢
are to be chosen so that the resulting equation is simpler than 1). By means
of 6), we obtain {\\'
O
p_=a_z=gau+azav_”+” tf\:.az—zu z,v
> wmk wa e TRE (T g T R TR
%
ro- Pl Tyl + (Buulhe + 2y ¥ )y + iy + (Zy 0 + 2,000,
o &
=z {u,) + Zzwuxvxq-.z{&(’yx) t o Zythe. ¥ Tyl
s = 9 O
= B_y = zuuxy + (zwuy Tf@vy)ux + zv"xy + (zwujr + zwvy)vx
R fui;gf“xvy a4 ZytcVy T Bl Tyt
3 A\
1 = I = 2
3 zw(‘fyﬁ\* 2zwuyvy + zw(vy) gl 2
'\ .
}“.
Let
1 r
1 Rz, +S'z,, +T'z + Pz, +Q'z +Zz=F

be obtained by making the above re i i
placements in 1) and rearranging. We shall
need only the coefficients ) o

R' = R(u)* + Swu, + T(u)® and T ? ?
’ Uy y = R(v,Y + Svv, + T(v,)".
We note that both are of the form

™ REN + 556, + T, = (a5, +be,) (o€, + ).

1) Suppose b/a # f/e; then, if for u we take any solution of ag, + bz, =0 and

for T ‘
Or v any solution of ¢, *f£,= 0, 1)is transformed into 1') with R'=7'=0.



PARTIAL OF ORDER TWO, VARIABLE COEFFICIENTS 279

"l 2 .
EXAMPLE 5.  Solve @) x (y-Lir - 2P ~1)s + y(y-1t + xyp - ¢ = 0,
By ylx+y)(r—s)=-zp—¥g -z =0."

o Here D ds 22 -DEY = 207 -DEE + yo=DEY = 0
2 2 . .
or  x (£) - #(y+DEL ¢ y(éyyz = GE-YENE -6 = O

Now x&, y§ -0 is satisfied by £-u=xy and xZ § 0 is satisfied by £=u-= xe.

Moreover, it is easily shown that these solutions also satisfy the given differential equa-
tion. Hence, the required solution is

2 = ylay) + G‘bz(xey).

by Here T) is y(x+y){(§) g‘fy] or (¢ - § ).f

Now & - g -0 is satisfied by £=x+Y¥ and § =0 by g y. However\{neltherof these
solutions will satisfy the given differential equation. m( ~“x

We take un=-x+y and v=y. Then p=2,, g=2,t 2 'rzzw:}‘s\_ Z,, + 2y o0d the
given differential equation becomes - ' x‘\ )

—ylE+ )2y = ¥y = Y ¥z, - z=0 " OF Ay, bz ¥ VR, TP T 0.

This may be written as \j
2,0t %zu + -:;zv+ E]';z = ;1(%; 21) + 4% * —z) = _3 1)(32 + '3) = 0

«a3
al e
N

Let ©z 4 -1-: = w; then @E + }-w =_~j0’,:’and_ wil =_gb(|1'{). .'NDW_
v o U S

e \
N\ 1 1
a3z lz w = -11:;’[;(1.:)&\\:9 = %?\(U) + cﬁ;g(u)., and z = Eqbﬂ_v} + _;d),(u].

3y v
where E.)\(v) = vlﬁ’(u)\a%l;l dalvy = %M"’)'. The required solubion 15 % = f_tg% ' %y:ﬂ
dv x\ :
EXAMPLE B'\\\ Solve X 2 -y % px - q¥ = x
H ?‘:% ;5 x (‘fx) - {5) = T yf )(xf +y§y) - x/y. 1t 1is found read-

b
Now ,xrf y§ -0 is satisfied B¥ £ =1y and x&, +y§ =0 by &= -
fy the reduced equation Ar-yitepr-qy= 0 henctei, ;*.1 :m; -
L(5/y) + B2lE- However, this com onplementary functio

ily that these solut.wns sat1s
Take u = %Y and v=x/¥; then

plementary funct jion is

obtained along with the partlcular jntegral as follows. . xz
t z 2 z vt wimwt 3 Zyp
x —Zz t=2 2 - HY g v 3
P:yzu+lzv, g=x2, ~ %’ r=Y zw_+2:w+_-y2 oy e ya ; ;
Y .

R TR S
and the given equation becomes 4% Fyy T x >y
. 1
= T,’} + —_R 3
Integrating first with respect £0 B = T , . ,
+ (xy) + 4% »
and then with respect to ¥ ¢ M+ ¢2(u) + oy = Palxfy) * P2
* .

9-10.
where —-¢>1(t’) OE gee Problems
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ii) Suppose b/a = f/e; then R({, Yo+ 5,4, t T(fj,}2 = m(ag, +bg, »*. This

case is treated in Problem 11.

NON-LINEAR PARTTAL DIFFERENTIAL EQUATIONS OF ORDER TWO. Or_le possible method for
golving a given non-linear partial differential equation of order two

8) F(x,y,z,p,q,r,5¢t) =0

is suggested by several of the examples of linear equations_, above, In each of
Examples 1-3, the first step consisted in finding a relation of the form

9) u = y(v), ¢ arbitrary,

where u = u(x,y,z,p,q) and v = v(x,y,z,p,q), from which the given differen-
tial equation could be derived by eliminating the arbitrary fuxﬁeg:ion. Such a
relation 9) is called an Jintermediate integral of 8). For example, p— xy + fy?
= y(x) is an intermediate integral of s = x-y, (Example 1’)3'

It can be shown that the most general partial differepj};i.zi'l: equation having
u = yi(v), ¢ arbitrary, \\ '

where u = u(x,y,2,p,q) and v = v(x,¥,z, P, 9), as, iﬁtermediate integral has
the form O
'.:\ w/

10) Rr + Ss + Tt + U(ré—s*) = V,

{ -
where R,S,T,U,V are functions of x,y,z.p,ﬂq;" However, it is evident from the
definitions of R,S,---,V that not every equation of the form 10) has an in-
termediate integral. The discussion.below concerns Monge’s method for deter-
mining an intermediate integral of 10), assuming that one exists.

.”,\\

TYPE: Rr + 8s + Tt = V. Cohsider the equation
11) O~ Rr +Ss + Tt =V,

AN/

that is, 10) with U...i’@fltically zero. Since we seek z as a function of x and
y, we have alwa,ys’%..?

K\
12,) O dr = Za s Zuy o pax 4+ qdy,
A\ ox 3y
N\
12,) dp = -a-Em+a—pdy= rdx + sdy,
ox By
12 ) dq = a_qu + ?.-q. =
3 3% Bydy sdx + tdy.
Solving the latter two for r = P-Sd¥, , _dg-sdx o hetitubing
dbx dy

in 11), we obtain R-—-_-_dp'(;:d}' tss +7M=-sd _

13) SIR(dy)* ~ Sdxdy + T(dx)’] = Rdydp + Tdxdg — V dx dy.
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The equations
14,) R(ay)* - Sdxdy + T(an)? = g
14,) Rdydp+dedq—dedy=o
are called Monge's equations. |
Suppose R(dy) -5 dxdy-rT(dx) Ady + Bax)? = @, If now
u = u(x,y,z,p,q) =a, v= vix,y,z,p,q) = b sat1sfy the system
[ Adv +Bdx =9
Rdydp + Tdxdy - Vdxdy = Q, "
AN
then = S&(v) ) ™\
i;)dn intermediate integral of I1) since u= a, v=h satlsfy 13) and, hence,

'\\
Suppose  R(dy)’ - S dedy +T(dx)® = (4,dy + By )Mz dy +Bydx) = 0,
where A,B,-A,B, # 0 identically. We now have two systems

[ Ajdy + Bydx = 0 ; Y A0y + Budx = 0
ands
Rdydp + Tdxdg - Vdxdy = 0 {‘\‘ Rdydp + T dxdg - V dxdy = 0,
It either system is integrable, we, ar,e led to anintermediate integral of 11};
if both are integrable, we have twa intermediate integrals at our disposal.
Procedures for finding a solutidi®of a given equation for which intermediate
integrals have been obtained. \w1ll be discussed in the examples and solved
problems. S .
¢ &\
EXAMPLE 7. Solve ,qu(yqi-z}r - p(2yg +z)s + ypzt + qu = 0.
</
Here R =q(yg+ zﬁv 'S = -paygeay, Te=wl, Va-py
2 2
B(dy\ ) Sdrdy + T = qyg+2)(dy) + p(yg+2ydedy + 3p (d)
= (gdy+ pdx)[(yg+2)dy + ypaz] =

Monge’s equations are

S
~ 4

and ) Rdydp + Tddg - Vdedy

2
q(yg+ 2)dydp + yp'dedg + p g dedy =
gdy + pdx = @
We seek first a solution of the system g(yq + 2)dy dp + ypzdx dg + pig dxdy = 0.

Combining the first equation and 121), we heve dz =0 a.uc-! z = . Substitublng inthe second
equation dy = ~pdx/g, obtained from the first, we obtain

(yg +2)dp - plydg+gdy) =

We add -pd: =0 to this, obtaining

dp _ ydg+gdy+d:
}" = yq +2Z

(yq +2)dp - p(ydq+qdy+dz) = o or

is an intermediate integral, The L2grange

with solution Z‘i‘_pti = b, Then ¥g+z =p'f(1)
L dy 42 pron ¥ o e obtain yz = a

system for this first order eguation 15 —o~ = 7 = 7 -y



282

PARTIAL OF ORDER TWO, VARIABLE COEFFICIENTS

dx

= d_z we obtain x = ff(;)d_z = ¢y¢z) + b, Thus, the required solution is
ftz) 2 z

and from

x = Pa(z) + Py(¥2)s

(Yg+2)dy + ypdx = 0

Consider next the second system 2 2
e q(yg+2)dydp + yp'dxdg + p'gdedy = 0.

From the first equatien, pdr + qdy = -z dy/y; ther dz = -z dy/y and yz = a. Substituting
from the first equation, the second becomes

gydp — pydq - pgdy =0 or = - = - 2 =0

with solution gy/p = b. Then gy = p.g(yz} is an intermediate integral. The Lagrange S¥ys-
tem is dr_ . ﬁ'll- dz = 0. Then z = a and the first equation dx ='d% has solution
glyz) =y 8(ya) A=y

€ W3

£ = — _]-g(yce)fir—Z = ¢po(ya) + b, We thus obtain x = ¢b,(z) + cb,(yz)itgs before.
y 3

| 3
s
7%

The solution may also be obtained by using the two intermed@t} integrals simultaneously,
N "

Upon solving them for p = - g = --mxl--_
fz) - glyn) YUy~ giyn))
and substituting in pdx + qdy = dz, we have yz. 8 ‘;g(yz)dy = yf(2)dz - yg(yz)dz,
Writing f(z) = 2f1(z) and g{yz) = —yzg, (¥2)a\ ithis equation becomes
dx = fy(2)dz ,ft.igi:;'('y;)[z dy + ydz]
and, integrating, x = Pylz) + Gyy2).
O See also Problems 12-16.
¢ '\’\,.‘
TYPE: Rr + Sz + Tt + U('r.ti.}'sz) = V. Consider equation 10) with U # 0. By

. . dp - &\dy -
substituting r = ~£.—a§~——v ¢ = Mo s as in the preceding type, we obtain

- O
s [R(dy)” - SdX‘OIJf@T(dx)’ +U(dx dp+dydq)] = Roydp+Tdxdg+U dpdg ~V dvdy,
The equat 1055\

15.) N\ R(dy) ~ Sdxdy + T(dx)® + U(dx dp +dy dg) = 0
15,) Rdydp + Tdxdg + Udpdg — Vdxdy = 0

arg called Monge’s equations. Note that when U = 0, these equations are 14,)
and 14,). However, unlike 14,) and 14,), neither can be factored.

We shall attempt to choose

A= A ai
combination (x,v,2,p,9) so0 as to obtain a factorable

16) A[R(dY)z‘SdXdY"T(CL’f)“U(dxdp+dydq)] t Rdydp+Tdxdg+U dpdg— V dxdy

_(3dy+bdX+Cdp)(ady+ﬁdx+ydq)

aa(dy)’ + (aB + ba)dx dy +bB(dx)? + cBdxdp +aydydg +ca dydp
tbydcdg+cydpdg = o,

i
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comparing coefficients, we have

aa=RN, aB+ba=-SA-V, bB=T\, cB=Ur=ay, ca=R by=T, cy=U
The 1.'1:‘.~;t relation will be satisfied by taking a— X and a=R: this choice de-
termines b=T/AU, B=AU, c¢=1, y=U. The remaining relation ’aﬁ*'b"": -Sh-¥

. 2 ™
takes the form Ul + — = —8h -
T v or

17 UN s suN+ TR + OV = 0.

In peneral 17) will have two distinet roots A = A,, A = A,; thus, 16) cam be
factored as

18)) (AUdy + Tdx + Udp)(Rdy + AUdx +Udy) = 0 and
18,) (A Udy + Tdx + Udp)(Rdy + AUdx +Udg) = 0. &
There are four systems to be considered. The system hlucif:{-"i'dmvdp =0,

A Uehy + Tdx +Udp = 0 implies (A - A YUdy. = 0 and, bence, unless A, =r,, Udy=0
identically, Similarly, the system Rdy+ A Udx+Udg =0 MRy + M Udx+Udg =0

implics Udx =0 identically, We therefore shall use.\opf'l} the systems
A Udy +Tdx+Udp = 0 " b Tdx+ Udp = 0
19) and \}
Rdy + \,Udx+Udg = 0 AL dy + M Udx+Udg = 0.

"\

Each system, if integrable, yields an iptérlhédia.te integral of 10).

N

N
®

KXAMPLE 8. Solve 3s - 2(rt-saval.
O. 2
Here, R=0, S=3, T=0, U=-2.=2. Then (P8 + SUN+ TR+ OV = aX - 6h-4 = 0,
A= - oand Ay=2, We seek s’pxg'tihns of the systems
Agldy + Tdx + Udp = ~4dy - 2dp = 0

o ldy v Tdx + Udp = dp>-2dp = 0 _
A\ &/ de+)&1de+qu=dx—2d€=U'

iy - AUds + Udgsads ~ 2dg =0

and

From the tirst sygUBR, y-2p=a and 2xrg=bi then () yo " IO D ayer l“;?ﬁ"lei;}
ate integral. f‘i‘ﬂm the second system, 2y+p=¢ and x-2¢=0; ¢ '

it is no
Lo . NS i .0 the argument of both f and g, 1
is an intermédiate integral. SINCe g appears ¥ ation involving two arbitrary fmetions

longer pnkﬁi\ble to obtain a solution of Fhe given ;:111 y

by solving tor p and g and substituting in dz = pa*+ @ Y« erpediate

. he interme

We shall attempt to find a solution involving 2rolrary consl::n;?;ionql)t=ea(2x+ + B
integral y-2p = f(2c+4g). To obtain an integrable equatiol, tal

tem for
where a and £ are arbitrary constants. The Lagrange SysL€

y-2peca@in+B O p+ag -y -2x-F

is & . __ % .

2 a y - 20x = B
oy+ £ subgtituting for &%, the last two members become
x = .

iy . =

e _ay-2%-PB

From the first two members. &

3.2 _ gey Py
[ - y
or adz = (- 3y - 26 = Bydy 8snd &% 57

» solution of the
ThuS. az = Eyz - (20_‘: + ﬁ))’ + ¢1(a‘x - 2y) 1s
2 ary constants.

glven equation involving

one arbitrary function and two arbitr
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Treating the second intermediate integral similarly, we take 2y+p =¥{x-2¢9)+ 5 or
p+2¥g =yx — 2y + §, where ¥ and & are arbitrary constants. The corresponding Lagrange

system is ii”_ = EX = ___gi_z_m From the first two members, y =2yx+&. Now bhe first
2y yx -2y + B
2
and third members become idf = ———-di-—— and z = - E’)’x ~ 26x + 8x + 1. Thus,
i —3yx - 2£ + 8 2

z = %yxz — (2y-8x + Pp{y—-2yx) is also a solution involving one arbitrary function and

two arbitrary constants,

A solution involving two arbitrary functions of parameters A and u will next be found,
Set 2x+g = A and x—2¢ = p so that x = (2A+w)/5. Then (i) and (ii) become y-2p =
FOO and 2y+p = g, and y = [FON) + 28(n]1/5. Now

(i) p o= tly-fd) = -2y rem QO and
g = A= = 3 -p. A

¢\A

(iv)

O
Substituting the second value of p and the first value of g in dz = p'dx + gdy, we have
dz = [-2y + g(ldx + (A - 20)dy 7\

i

~ 2y detady) + ';'g(,u.) [2 dh+dul + %?\[f’(?\.)d?x+2g"i;ifdp]
\/
2 1. .0 1 1
- 2y derxdy) + z[Ng/(du+ gdh] E[N’\"‘S* F]dN ~ Sfgdh + —gGudu

L §
A\

- 2zy + -?\g(#) + —Af(M ~ LN + Do)

and z

=~ 2xy + Ay - dﬁa{?\) + Pali).

This solutjon may have been ob,t@l}ed by using the first value of p in (iii) and the sec-

ond value of g in (iv). X\
See also Problems 17-18.
7]
\\\* SOLVED PROBLEMS
1. solve r = 2™ or 3% 2.y

\} ‘a";-z--xeo

- . - 3
One integration with respect to x yields p = g—z = % ¢~ + $1(y), and the second inte-
[
gration with respect i =2 7
pect to x yields =z = ¢ + xh(y) + ha(y),

2, solve xy’s = 1 - 4x2y.
2

Integrating R = y1,-2 -1 . 3 a1 -
33y =y - 4xy™"  with Tespect to y, gz T PRT T %

Integrating this with = ! 2
respect to x, z = - 7 Inx - 2x" Iny + dy(x) + Pu(y),

d
where ; Py(x) = Wix).
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3. Solve xys — px = ¥

Integrating

| -
=z with respect to v, we get

D

1 %
2w o {— + 9t

Inteerating with respect to x, we gt 2z = y'Inx + ydy () + gy}, where Lcx) = Wix)
._ i ‘

4. Solve ¢ —xq = - siny ~ x cosy,

e 04
Integrating 5; - %q = =(siny +x cos y), using the integrating factor ¢, we obtain

= —_J'e'xy(siny + X COS ¥)dy = e'xyco‘e‘»y + Y{x) or ¢ = % = co‘&} + €0tx).

' 3
N 3

A second integration, with respect to y, yields 1z = siay + ¢ j%?x} + (%),

wheye ¢by(x) = P(x)/x. AN Y
o ?
5'. Solve sy ~ 2xr — 2p = Bxy. N/
The auxiliary system for the equation 2::3‘0 ' §£ ‘.-ﬁxy 2p is iif = fil = dp .
3 \\%’E L2 -y —6xy-2p
N

From the first and second ratics, we find & .= g, By inspection,

2y? (2x) - (2yp+zzy21ié’-y) + yi(-Bry-2p) = 0

so that 2y dx \x}ym 2xy’ydy + ¥7dp = 0,
or ¥ (dp + 2xdy + Zydx} = 2y}p+2xy}dy -0, and 2 +:xy -
¥ NS ¥
N/ :

O P 2
Thus, we obtein as §gition p + 2y = ¥ $lay).  Then

\\J 9 2. _ .2 4
& -2xy + yz ({;{Q\A) and z = —xzy + 43_1(13’2) + hp(y), Wiere &‘f’t("y) =y ).

L

ox N
N
Q 5
6. solve xs +yt + g = 10x7y, dg
dg = J,_o is A
The auxiliery system for the equatlon zz2 + yo@ = 10698 78 57 % 57 % Ty 7

From the first two ratios, x/y = e. By inspection,

3 .
g8y - ' (yy + 2 (10x7y~q) = 0

- 8dyde + 2'dy,
o that (q_8x5y)dx—2quy+xdq=0' or x g + qu—Sxy + Y

u
and gx = 2%yt b

4
The general sclution is gx = 26y + Yly/e) Thusj 5 :
) ) Y
2 ¥ pere — g (%) = =)
5T 227y +§n,b{%) and  z = 2y + ¢ G+ Polsds T y x FTE
Y
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1 2 2 2 3 3
K. solve t—q—;_(i—l)z = xy -xy t2xy-Ix.

i1 2 2.2 3 3
The equation may be written as [D; —Dy - ;(; -]z = xy —xy +2xy - 2x7.

. 4 -3/x
The complementary function is z = ey/ Py (x) + e’ ™7 ho(x).

For & particular integral we try z = Ay2+By+C, where 4,B,C are functions of x or con-

1 1 2 2
stants. Then [Dj -Dy - %(%—l)]z = 2A-24y-B -(—2 - ;)(Ay2+By+C) = xy *xz:r + 2x3y—2x5.
X

identically. Equating coefficients of the several powers of ¥, we have

A oY aaaon, —2a- G -hBeal, 24-B- (5 -0 -,
5 x 2 x 2 x
x x x o &\
A\

Then A = —xj. B=C=0 and the required solution is 2z = ey/xqbl(x) + \g?—}:/?c P (x) — xsyz.
QO

L ¥
~
N
i

8 Solve ys+p-yg—-z = (1~2x){1+1lny). .‘;.\\
This equation is solved readily by noting that it may be pub Yn the form
\/
2 Ry
1 & -
EE +la_z_§f_i=_a_(§f+_;) _\%§{+lz)=1_x(1+1ny),
WAy Y& oy ¥ a3y Y Ny b
3 & ‘?’fx )
. z 1 . N - . X,
Setting w = — + -z, the equation becoma;.‘a—w - = l—y—x(l + In y) for which e * is an
integrating factor. Then K\ )

\\

- 1+1n x . - ".\'} -
eFw = yf (e ¥ oxe yde = Xy ﬁ%hy(xe B + () and v = ox 1x1ny +;ny + e Py

Y O

l+1lny

In turn, integrating 3_2\“12 = x
Y h§

N

y‘.§\ %y x
Yz = x_[f(~1+1n Vdy + e ydndy = xylny + e ¢y(y) + balx).

£\
i \ W 4

\ N/
\ 3
4

LAPLACE’S TRANSFORKATION.
9. Solve t - +p-qg(l+1/x) +z/x =0,

: 2
Setting (§y) -§x§y =0 and solving, we have £ = x and & = x+y.

+ exl,b(y). using the integrating factor y, we find

For the choice u=x and v=x+y, p =z, 4z, =12y, §$=2,+z,, and t =z,. Sub-
stituting in the given equation, we have z, — I, l(z -z} = E(a_z -z) + l(a_z -z = 0.
v v Bu v x
Az 3
Let ==~z =w; then & + ¥ - ¢ and &
) — — = uy = = - =
3 5t W= = 2) = Y.
Integrating ?i -z = l¢{v) we have e-Y; = 1 e’ v
o m . e 'z = t—{q’u(v} +duy or z = o Pa(v) + e plu)
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K4y

{n the original variables, z = ¢ . T4y 1
% bulxry) + o) = ;flrey + e’ glx),

where (Y T € T dyxey) and gy = ¢ b,

2
10, Solv- ays m X T o px gy +z o= -2y,

) .o 2 2
frror -‘-)(-7,'.,_:,,, - X (gx} = xfx(yfy - xgx} = 0, we cbtain § =y and g = xy.

Vivnge w0 Xy, MY P UYL, q=x,4,, T :.yizwn 5= r, bEYI YR, the given
ditterential equation becomes
1 1 i
ST -1 - EZU + —2 = = 2_!1 or E(?i_ lz) - l(a_z - 1;{: _ilf.
: uv o2 udw ¥ '3y ,v& o2
K i ':w. .
[t . — =t - w, then él—u-f=—2—u.and E=—2—u+gb(v) ) AR —2l+un,b{v)
Tt ¢ v U v? u v? § v?
. o1 1 w’ Po N RS
rrtgr et g A = - — P havey 4~ = — )
Intorrating v = g= = 32 ¥ + up(v), we : Y‘EE.\\” = +u @y + D@  or
u? 1 ‘
R Palv) + v Palw) = ,z-;\\" u A ) + v dalu).
R ..;.\ B
\y 2 2
b tie oripinal variables, 2z = xy M) \+>.'Y Polxy) + xy = by (y) + yPalay) t 2

N
R

-

T O R A 33’%“431!1- _
? )y o- ..x_yf f + 2\§ )y = (xfx-— yfy)z = 0, and since the factors are not dis-
.‘.\‘ \

tinct wee obtain only ff 8!'

e 1

PR 2
P _ = g =2 +x¥y2,. +¥
e wet u xy and fak@/v=y; them p=Y¥Z, g=xz,+ 5 T=Y P b XX T ey

oy o ..'{’z\w and the given differential equation becomes
T TN & 21
AW . o2
vz, t vz, = B /u,

N\ yzzw + 3yz, = By/x or

ever, it is seel that v is an integrating factor; hence

an equl l\\}l of the Cruchy type. How

4
Se iz = 8u5/u and vszu = 2w/ + Glud
ut 1
2
_ E_ - __(b(u) +. ¢1(u)
Thety P 2:: QS(U) and T q 21}
»? i
S Sy + A
u ve

. y
- gy + PN Y g
¥

272
= xy Q2(x¥)
of 1 - dyy + 2 p(xy) Yixy)
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HONGE'S METHOD.

19, splve gs — pt = qa.
2 3
The Monge equations are gdrdy + p(dzy =0 and pdedg + ¢ dxdy = Q.
From the first equation, gdy + pdx = 0; then dz = pdx + gdy =0 and z = qa,

) , 2
Substituting gdy = —pdr in the second equation yields dg~¢ dx = 0; thus l/g + x =5
and i/g +x = f(z) or [x-f(z)lg = -1 is an intermediate integral.

The reguired solution is obtained by solving this first order equation; thus

2~ [fGydz = =y + da®) oy +xz = da(2) + hp(x), where @/(2) = f(2).

o &\
2
1%, solve qir - 2pgs + pzt = pg . . \\
The Monge equations are (g dy + pd:t}2 =0 and q dydp + p dxu(; “l pq dx dy =
From the first equation, gdy + pdx =0; then dz = pdr + qdy‘ﬂ 0 “and 2z = a.
Substituting gdy = - pdx in the second yields -gdp +pdg +pq\dx 0 or - dpp ‘gi’ ; =0
and e q/p b, Thus e q -pftzy = is an intermediate integral. The Lagrange system
for this equation is A + dz = Q. "i\ ’
) f(?.') - gx \ \ ’
\
. _ % dx dy . .
From the second equation, z = ¢, Then the f11:s becomes j-r-- = with solution
o ey _ %

3

ex/f(c) +y = d. As required solution, we fmd .

y = = /f@) v dyz) = €7 ?&m + (), where ¢, (z) = - 1/f(2).

.*\;

Solve x(r+2xs+x t) =p + 2x N\

14
The Monge equations are q;dy) - 2xdedy + :cz(d.:c]2 = (dy - xth)z = 0

ang! \ xdydp + x> drdg - (p+2x°)dxdy = 0.

We seek solutlon'q}\ the system dy - xdy = 0, xdydp + 0 dedg - (p+2x5)dx dy = 0.

From the first 13f111811210n. o2y -a. Substituting dy =x dx in the second, we get

Y. 2
\/ xdp + x dq - (p+2x5)dx =
i ; : 2 .
Using the integrating factor 1/x°, we obtain the intermediate integral p +xg = %’ +xf(x2— 2¥).
: . g d dz
The Lagrange system is T }Z * 3 5 - The first two members yield x —2y=c
T+ xf(x” - 2y)
and then the first i x _ _ dz .
and thlrd become --1—- = - . Sol\;lng,
13+xf(c)
z = J_x“ + 'xzf(c n ".b _ 4 |2 2 2
L% Z } (c) ar z o= fdx o+ SxTf(x"=2y) + x —- 2y).

15. Solve g(l+q)r - A+ 214 p)s + (14 pit =

The Monge equations are

.2
A+ yY + 1+ 2y (A+p)dxdy + (1+ py?(dn)? = [gay + (1+pYde] [(1+ q)dy + (1+ p)dx] =
end

¢(i+q)dydp + (1+p)2dxdq = 0,
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Consider first the system
gdy + (1+p)dx =
q(i+qdydp + (1+pFdndg =

From the first equation, pdx + qdy = —dx: then d
t ' = —gdx; z= —dx and x+z=q. Th i tuti
gy = -(l+pddx in the second yields ® substitution of

~(1+qydp + (1 + p)dg =

. 1+p 14
from which we obtain = b, Thus, . j 3 : :
1+g _ v g flx+2) 1is an intermediate integral,

Consider next the system :
(rddy + (1+p)dx =

qil+q)dydp + (1+p)2dxdq = 0,

F'run} the first, pdx+qgdy = —(dc+dy) so that oz = —(dx + dy} and x+y+ \\ The substi-
tution of (1+g)dy = ~(1+p)dx in the second gives —gdp+ (1+p)dg = hich is satisfied

) 1+ 1+

by —-(}JE = b, Thus, -q—E = g{x+y+z) 1is an intermediate 1ntegral

Solving the two intermediate integrals for fg+f;g q\\ ff and substituting
. g \\ g

in the relation pdx + gdy = dz, we have
g +f-g)de + fdy = (g-fldz,  fed f@ﬁ%dﬁdﬂ + gldr+ da),

N0 -

\ 3 .
dr = _aix+dy+dz + dx+dz’ anﬂ,f\ x =ghylxary+z) + dix+2),
glx+y+zy  flarzy o\

NS

*ad

~ TN
“

Solve {x-~z) [xqzr ~G{x +Z+2px)s +A& P px + pz + pzx) t] = 1 +P)Q2(x +2z).

x..x\
¢ 2\J
Monge’s equations are X\
xg® (dyY + g(x+ 24 2px)da dy '+‘<'1+ py(z+ pry(dx) = [qdy+ (1+P>dx] [gdy + (z+ pr)ds} =
and (x =2) [xq\xdp + (1+p)(z+ px)dx dq] - (1+P)Q (x+z)d'.z dy = 0.

Consider first t@’s’ystem

*

gdy + (L+p)dx = O

‘)xq dydp + (1 +p) (2 + px) (x -~ 2)dx dg ~ (1+p)q Zxrz)dedy = O,

~
wsgx - Z

From the f%ﬁﬁ; equation, pdx + qdy = —dx; then dz = —dx and x+z<=a, Substituting gdy =
—~(1+p)dx, z=a-x in the second, we have

i - {2~ a)xg dp + {2x—n)(a-—x+px)dq + (1+pgade =
i) becomes
To solve this equation, ceomsider x & Then 1)
—(Zx-a)xg dp + {x~a){a~x+px)dg = 0

we take the differeptial of this relation,

s a constant so that dx = 0,
ar z(gdp-pdg) - (a-x)dg = 0

and f&t{;ﬁ:j =p(x}. To determine: gb(x),

g(x dp+pde~de) ~ (xp+a= x)dg = g o

and gbtain qup_xpdq=qdp-pqair+qu+adq-xdq.
(-} (@-x)dg + (F+pqadt . y_aydy + {1 ;xpjiadx;

From i), =xqdp — xpdg = Oy =t
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I+piga dx
then : q2d¢-pqu +gdx + adg —xdg = (e-x)dy + -(.—22—:]&—,
d.ﬂ:M&: 2 and ¥ = b o= fa+z).
g{2x~a} 2x - a 2x—a
Thas, 2RF%7% . ol A fex+zy dis an intermediate integral,

g{lx—a} q{x—-12)

Consider next the system
zgdy + (z+px)dx = 0

(x—z)xqzdydp +(1+p)y(z+px){x-2)ds dg - (1+p)q2(x+z)dx dy = 0.

From the first equation, pdx + gdy = -z dx/x; then.dz = - 2dx/x and xz=-ca. Substituting
xqdy = ~(z+px)de, z = a/x in the second, we have N

"\
is 2 Z 4 A N
ii) —xg{x ~a)dp + x(l+p)(x —addg + (1+p)g(x" +adde = 0.
. A\ Y
Considering x as a constant, this becomes qdp - (l+p)dg = 0 and we haye __;_E = Y(x), From

~
e
N

x'\ ’ 2-1—
this relation we find gdp - {1+ p)dg = qzd\h, while from ii) qdp"\(:l\rp)dq = iip—)g—(-f——a-)dx.

\ xf{x —a}
2 2 \
Then di = (“zp)q;‘ Y2 gy - “&("2”) dr = (-g + E B Ings—lnx s lnxP—a) « Inb,
G x(x —a) x(x" —a) .x\fwa"
2 a \
bix — 9
and ¢ = —E—-—ﬂ = l_f_f.’. Thus, ﬂ- = g{xz}+ 15 an intermediate integral.
x q gi{x-2) ’.jn."
Bolving the two intermediate integrals, ﬁé:;‘ind p= f-_zg and g = ! . then
A\ xg-f xg-f
~
f-zg 1 ¢& ™
dz = pdx + qdy = —=dx + or flx+zy(dx+dz) + dy = zg(x2)dx + xg(xz)dz.
sg-f  xgf

Thus, ¥y + ¢y(x +2) = ¢,(xz) ;'ié 4he required solution,
9\
Bolve 3r+s+t+ (rt‘g,?) = _9.
AN
Here, R:s,\';Sa-’T:U:L ¥V=-6: then

1N +SUN+TR+ UV = ¥ + A\-6=0 and Ay =2, Ay =-3.
We seek solutions of the systems {see equations 19))
Alidy + Tde + Udp = 2dy+dx+ dp = 0, Rdy + MUdx + Udg = 3dy - 3dx + dg
end AUdy + Tdx+ Udp = -3dy+dx + dp = 0, Rdy + \\Udx + Udg = 3dy + 2dx + dg

i
U
1

0
0.

From the first system, we have

y+x+tp=a, 3y-3x+g="5 thus, 2 = 3y -3 is-
an intermediate integral, I prly+x = f(g+3y-3x)

"y From the second system, we have -— Sy+x+p=¢, 3y+2x+q-=4d
fusb; hp-Sy tx = g(q'+3y+2x) is an intermediate integral, Since q appears in the argument
of both f and g, it will not be possible to solve for p and g as before, and it will not be

Possiblt.a to fird a solution involving two arbitrary functions, We give two solutions involy-
ing arbitrary constants,

heplaC1ng the albltrary fu.nctlon 1 Of the flrs i t i i
t in
emedlate J.ntEgl'al b‘]‘ G—(q 3y )

P+2y +x s a(g+3y-32) + 8 or P-aq= (3a-2)y - (3a+DLx + 3
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for which the Lagrange system is ét.. = ‘_i_-’f = dz . From ﬁ _dy .
1 - (Be-2)y-@Ga+Dx+pB 1T Mefhd
y+ax=§';thenﬁ= d _ dz and
1 (B -2)y-Ba+x+3 -(30-2+a+1)x+3a§_2§+ﬁ
- 2 i
z 2 =3B Dat 4 Gal-Yef)x + 9 = - 4B rar1x? (3ay + 3072 - 2y~ 2ax+ Bz + 1,

2 2
Thus, 2z = z(8a”-5a-1)x" + (3a-2xy + Bx + P,(y+ax) is a solution involving one arbi-
trary function and two arbitrary constants,

Replacing the arbitrary function g(g+ 3y + 2v) of the second intermediate integral by the
linear function 7(q+3y+2x)+35, we obtain

p-3y+x =y(q+3y+20+8  or  p-yg = ¥y+Ly+ @y lx + 8

N
for which the Lagrange system is de_dy . 2 Cohen E Y, get
I =y 3y+Ly+@y-Dx+s3N\S T 1~y
Y +yx = £, then gf_x_ = dz = 'j\\“‘b and
Loo3(y+ly+ @y-Da + 8 (328 1x +3¥£ + 36 + 8

z s ~ %(3'y2+'y+1}x2 + (3YE+BE+8)x + 1. \

>

Thus, 2z = %(3’>’2+ 5}:_1)12 + 3y +ay + 8x f\tﬁgj(y‘i-yx} is also a solution,
QY

N/
LY
o ¢

Solve xqr + (p+g)s + ypt + (xy_l)(;;f_’,s“n} +pg = 0.

Here, B=xgy, S=p+q, T:ygg I}'éxy—i, V=—pg; then

= P -
UN? 4 SUN+ TR+ UV = (xy 40 + (@ (ay-Dh + pg =0 and Mos Mo oy

A

L3

Consider first the system . The system is not inte-

[ -pdy +ypdx + (xy - 1)dp = D
".’\s.

xgdy — gde + (xy~1)dg =0

grable since np@%er equation is integrable.

Consi'dq'r:\z;.éxt the system ~—qdy +ypde + (zy-1ydp = 0, %4y - pdx + (xy-1)dg = 0.
e multﬁl'y the second equation by y, add the first, and divide by :u_;y—l tti iobts:]in »
gdy +dp+ydg =0 and thus p+yq = a. Again, we multiply the first eguation : x.Hw
the second, and divide by ay~1 to obtain pdr+ x dp + g =_0 and ;:ht!zr xi;-fp~=g.(xp+q)
ever, the form of the resulting intermediate integral =xp+9Q = f(yg+ g

does not permit a selution imvolving two arbitrary functions. t
i nstants, we
replace f(yg+p) by the linear function a(yq+p) +B in the

ate integral above and have .8
(x—a)p + (1-a¥)g = F

dx _ _dy _ 9% prop the first two members we

system is
The corresponding lagrange S¥ e -2y

or (:c—a)‘z (t-ay) = §. and from the first and third

i - ~ay) = Iné i
obtzin alnfx-a} + 1n(l-~ay) Thus, tne solution s

members we get z = B lax—a} + 7

&
: = Bln(x-a) + Pl(x-a) (a-anl
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SUPPLEMENTARY PROBLEMS

Solve,

19. r = =xy Ans. z = x Pg(y) +P(y) + %xay

M s=x2+y z = dylxy ¥ () + %(x5y+xy5)
2. t = - 22 sin{xy) z = ¥y by(x) +daix) + sin(xy)
22, ar-p=14 2 =12¢1(y) + Po(y)

B, xr+p=1/5 2 = y(y) Inx + Pp(y) + &/x

24, yt-q=2x2y z =y ¢1(x)+¢2(»$+xy Iny
25. ys - p = xy’ siny) z =y @y(x) +\<ﬁ>~z?y; - sin(xy)
%. t+q=-xe” z = 'y¢i\gm ¢ paln) - xye

2

9. r+s =3y =cQ(x y)+¢2(y)+xy

28. xyr + s - ¥p = e’ \\\.‘i’a\:¥ ¢’1(1 —y )+ Paly) ,ixzey
29, 2yt —as + 29 = xzy *‘f z = ¢51(x y) + Pax) + z&x y
30. xr+ys +p = Bry 4 9xF ~;Z§”;" 2= By(x/y) + aly) ¢ Xy b D
L
LAPLACE’S TRANSFORMATION. A\
3. 6r-s-t =18y - 4 V Ans. z = ¢y (x-3y) + Palx+2y) + vz -5
32, xixy-1ir - (x y -1}s {{}(“J;y DIt + (x=-1p + {¥y-1¥g = Ansg, z = Cﬁi(xey) ; ﬁ»“'zf}“fﬁ:)

33 xly-xr - (3’ - x, }3;\' Y-zt + (y+x){p~q) = 2(x+ry+1)
Hint: Let x+,3< ‘t; 1y = U, Ans. z = hylx+y) t Pplxy) +x -y + Inx
B -Ur - F=D)s + yy-1)t + p ~ g = 2ye> (1— )

2
Ans, z = hlx+y) + ¢2(yex) + (x+y)y2€ x

35. xyr-(xz—yz)s—xyt+py—qx = 2(x2—y2) Ans, z = :;bi(x2+ yz) + Paly/ny - xy
36. r-2s+t+p-g=e2y-3) - e’ Ans. 2 =dy(iiy) v el Gu(xry) + xe” + el
Hint: let x+y=u, y=v.

37 yi(re2s+t - 1 1.2

- ¥y =2+t ~y(p-q) -z =y Ans, z=y<,‘u1(x+y)+§<;b2(x+y)+ 3Y
MONGE'S METHOD.

x

38, (e7~1)(qr-ps) = pge” LL:p=yz), G8: x = (2) +dp(y) + e



39.

40

41,

42.

43.

44.

45

46.

47.
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293
r—3s =10t = -3 LL: p+2g = yu(y+52), p-59 = yoly—20)
8.tz = Py(y+52) + oly-25) + 2y
g’r—2pqs +p't = 0 LL: p=gy¥(z). &8.: xdy(2) +¥ = dp(e).
gr-(l+p+@is+(l+pit =0 LL: p-q =yy{x+z), p+i=quyyiz+y)
68 z=f{x+2) +gx+y
2 2 .o 1-q
(leg) r~2(2-p-2g+pg)s+(Z-pyt =10 I.1,: Tp =Yy +2x~2)
G.8.0 x + yP(¥+2raz) = oy +2x-2)
e &\
2 O
5r-10s+4t—(rt—-s5 ) = =1 .\i“}x.
LI: 3y+dx- p—f(5y+'?x q), Ty+4&x-p = g(5y+3x-q) ;\ )
w\5 2
Sol.: z = 2 +3xy+ —y 2 20’ P+ duly +ax) or z =26 +7£{+*§y +2yx -5“452(?*')’”)
2 \{
2r—6s + 2L+ (rt=s5 ) = 4 \\*'

1.1.: 2y+2x+p f(2y+4x+q), dy +2x+p = g(gys}&wq)
Sol,: z =ax +)3x—(x+y) + Py (y +ax) or\\\gz\'\ rx Zy 6a- x—4xy y+¢e yHyYz)

N\
s}:‘
-5 46— b=y = 9 8\ 2 3,2, fr+ diy+ax)
W\BbL.: = + oy + Br+ Plyraxl.
I.I.: 3y+dx—p = f3y+3x—-¢) \::;sm.. z =2 +35y ¥ 3Y J2!
+t+y(rt sz} = - :“§\\ !
" ) ) ) 22
LIL: yp+x = fa+y) \\ Sol.: 64z = 2y 3y +6axy+ 60y + dlax+iy ).
» f\)
- 1-pg
xqr —{x + ¥}§ +ypt+x]Q‘$ s) )
1.1 xp+y \f\yqdm}. ol z =ox +y/at Bzt pyh
.is;
oo

()..






Applications,
geometric, 41, 5, 133, 178
physical, 49, 133, 178
Approximation, numerical, 186
Arbitrary constant, 1, 78, 231
arbitrary function, 232
Auxiliary system, 239

Beams, 134

Bernoulli’s equation, 35
Bessel equation, 222
Ressel functions, 222

Cauchy linear equation, 108
C-discriminant, 69
Characteristic equation,
complex roots, 83
distinet real roots, 83
repeated roots, 83
Charpit's method, 247
Clairaut equation, 62
complementary function, 79, 257, 266

Index

pifferential equation,
linear,
partial, first order, 238
partial, higher order, 276
non-homogeneous, partial, reducible, 265
non-homogeneous, partial, irreducible, 268
non-tinear partial, 244, 280
numerical solution, 186
partial, first order, 238
partial, higher otder, \\
constant coefficiénts, 255, 265
variable coeff;cients, 276
solution in sehies, 197
systems of{,Qﬁ"ﬁ
total, 164 &
pirectjom field, 8

Eleég}ic circuits, 57, 136

~Bxact equations, 12, 24, 123

4
\

Complete solution, N

of ordinary differential equation, 73. ~
of partial differential equation, 24@,‘\‘244
Conditions, .'<§"‘
for exactness, 24, 165 \
for integrability, 164 T\
for linear independence, 8-
"\s.

o W/
£\

Damping facter, 134
Differential EQUatiaﬁ}
Bernoulli, 35 <%

Bessel, 222+,
Clairaut, 4
exact, 12, 24, 123
extended Clairaut, 246
first order, first degree, 12, 24, 35
first order, higher degree, 61
Gauss, 223
homogeneous ordinary, 13, 78, 82
homogeneous partial, 255
Legendre, 220
Legendre lipear, 108
linear,

of order one, 13, 35

of order n, T8, 123

of order two, 111

No/

295

wxistence theorem, 7

* Extended Clairaut equation, 246

Extraneous loci, 68

First derivative method, 187
PFunct ions,
Bessel, 222
complementary, 79, 257, 266
homogengous, 15

Gauss equation, 223

general solution, )
of ordinary differential equation, 7

of partial di fferential equation, 238, 256, 265

Barmonic motion, 134
Homogeneous equation, 15
Bomogeneous function, 15
Homogenecus linear equation,
Hooke's law, 55
ijergeometric series,

g, 82, 255
273

Indicial equation, 208
Infinite series, 197
Integral curve, ki
Integrating factor, 12, 24
Intermediate {ntegral, 280

Kutta’s gimpson’ 8 method, 188
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Lé.grange system, 23% Particular solution, 7
Laplace’s transformation, 278 p-discriminant, 69
Legendre equation, 220 Picard’s method, 186
Legendre linear equation, 108 Primitive, 1
Legendre polynomial, 221 )
Linear ordinary differential equation, Recursion formula, 198
of order one, 13, 35 Reduction of order, 122
of order n, 78 Regular singular point, 206
with known particular integral, 123 Runge's method, 188
Linear partial differential equation,
238, 276 Separation of variable, 15
Loci, extranecus, 68 Series,
hypergeometric, 223
Monge’s method, 280 solution in, 187 )
Taylor, 187 '\\\
Newton®s law of cooling, 51 Short methods, N
Newton’s second law of motion, 4% ordinary dlfferentla} equm:lon 99
Non-homogenecus linear partial differential partial d1fferent.1&1 equatlon 266
equation, Simultaneous equa\mns 157
reducible, 265 Singular poanOi‘SQ
irreducible, 268 Singular solfibion, 7, 67, 244
Non-linear partial differential equation, Sclutions;
244, 280 complete; 79, 240, 244
' n@ral 7, 238
Operators, factorization of, 112 nSeries, 197
Order, .4 Jparticular, 7
of differential equation, 1 ’{~::" singular, 7, 67, 244
reduction of, 122 &N Springs, 140
Origin, N\ Systems of equations, 157
of ordinary differential equation, 1 L\
of partial differential equation, 231 ;4 \ Taylor series, 187
Orthogonal trejectories, 43 «\" Total differential equation, 164
O\ Trajectories, 43
Parameters, variation of, 93 O . L.
Partial differential equations ,1"\~’231 Undetermined coefficients, method of, 493
Partial fractions, method of, 'SJ\Z variables separable, 13, 15
Particular integral, 79, ,%(Tn 268 variation of parameters, 93
e) ™

3
3
\/
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